摘要
利用平移的方法解决了极大值问题S:=sup{∫RN|u|pdx;u∈H1(RN),∫RN(| u|2+u2)dx=1}的可达性,并且得到了半线性椭圆方程-△u+u=|u|p-2u,u∈H1(RN),2<p<2*的最小能量解.为了解决上述极大值问题,建立了一个集中紧性原理,而且利用这一原理,也得到了该方程的最小能量解.
Devoted to consider the constrained maximization problem: S:=sup{∫RN|u|pdx;u∈H1(RN),∫RN (|u|2+u2)dx=1}.By a traslation method, can show the result of existence of maximizer of the problem. Meanwhile,obtain the result of existence of ground state solution of the following semilinear elliptic equation:-△u+u=|u|p-2u ,u∈H1(RN) , 2<p<2*. One the other hand, in order to solve the constrained maximization problem, construct a concentrationcompactness principle.Applying the principle,also get the result of existence of ground state solution of the above eqation.
出处
《福建师范大学学报(自然科学版)》
CAS
CSCD
2003年第3期5-9,18,共6页
Journal of Fujian Normal University:Natural Science Edition
基金
国家自然科学基金资助项目(10161010)
福建省教育厅基金资助项目(JA02160)