期刊文献+

R^N上次临界带约束的极大值问题 被引量:1

Constrained Maximization Problem with Subcritical Sobolev Exponent in R^N
下载PDF
导出
摘要 利用平移的方法解决了极大值问题S:=sup{∫RN|u|pdx;u∈H1(RN),∫RN(| u|2+u2)dx=1}的可达性,并且得到了半线性椭圆方程-△u+u=|u|p-2u,u∈H1(RN),2<p<2*的最小能量解.为了解决上述极大值问题,建立了一个集中紧性原理,而且利用这一原理,也得到了该方程的最小能量解. Devoted to consider the constrained maximization problem:  S:=sup{∫RN|u|pdx;u∈H1(RN),∫RN (|u|2+u2)dx=1}.By a traslation method, can show the result of existence of maximizer of the problem. Meanwhile,obtain the result of existence of ground state solution of the following semilinear elliptic equation:-△u+u=|u|p-2u ,u∈H1(RN) , 2<p<2*. One the other hand, in order to solve the constrained maximization problem, construct a concentrationcompactness principle.Applying the principle,also get the result of existence of ground state solution of the above eqation.
出处 《福建师范大学学报(自然科学版)》 CAS CSCD 2003年第3期5-9,18,共6页 Journal of Fujian Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(10161010) 福建省教育厅基金资助项目(JA02160)
关键词 约束极大值问题 次临界 半线性椭圆方程 最小能量解 集中紧性原理 平移方法 maximization problem subcritical semi-linear elliptic ground state solution concentration-compactness principle
  • 相关文献

参考文献8

  • 1Lions P L.The concentration-compactness principle in the calculus of variation,the locally compact case[J].Ann.Inst.Henri Poincaré,Analyse Non Linéaire,1984,1:109—283.
  • 2Chabrowski J.Concentration—compactness principle at infinity and semi-linear elliptic equtions involving critical and subcritical sobolev exponents[J].Calc.Var.PDE,1995,3(4):493—512.
  • 3Ben Naoum A,Troestler C,Willen M.Extrema problems with critical sobolev exponents on unbounded domains[J].Nonlinear Analysis,TMA,1996,26:823—833.
  • 4Brezis H,Oswalol L.Maximization problem involving critical sobolev exponents[J].Mat.Applic.Comp.,1987,6:47—56.
  • 5Chabrowski J.Weak Convergence Methods for Semi—linear Elliptic Equations[M].Singapore:World Scientific Publishing Co.Pte.Ltd,1999.
  • 6Brezis H,Lieb E H.A relation between pointwise convergence of functions and convergence of functions[J].Proc.Amer.Math.Soc.,1983,88:486—490.
  • 7Willem M. Minimax Theorems[M]. Boston: Birkhauser, 1996.
  • 8Berestycki H, Lions P L. Nonlinear scalar field equations, (1) Existence of a ground state, (2) Existence of infinitely many solutions[J]. Arch. Rat. Mech. Anal. ,1983, 82: 313--376.

同被引文献6

  • 1Huang Daiwen,Li Yongqing.A concentration-compactness principle at infinity[J].J.Math.Anal.Appl.,2005,304:58-73.
  • 2Chabrowski J.Concentration-compactness principle at infinity and semilinear elliptic equtions involving critical and subcritical Sobolev exponents[J].Calc.Var.PDE,1995,3(4):493-512.
  • 3Brezis H,Lieb E H.A relation between pointwise convergence of functions and convergence of functions[J].Proc.Amer.Math.Soc.,1983,88:486-490.
  • 4Willem M.Minimax Theorems[M].Boston:Birkhauser,1996.
  • 5Lion P L.The concentration-compactness principle in the calculus of variation,the locally compact case[J].Ann.Inst.Henri Poincaré,Analyse Non Linéaire,1984(1):109-283.
  • 6Dinca G,Jebelean P,Mawhin J.Variational and topological methods for Dirichlet problems with p-laplacian[J].Portugalice Mathmatica,2001,58:339-378.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部