期刊文献+

自由边界条件的二维无规混合磁性系统磁特性的微磁学研究 被引量:1

Micromagnetism Simulation of Magnetism of a Two-dimension Diluted System with Free Boundary Condition
下载PDF
导出
摘要 采用能量极小原理的微磁学方法对异类自旋组成混合Heisenberg自旋体系进行模拟计算,研究比较自由边界条件和周期边界条件下的二维铁磁/反铁磁无规混合系统的磁特性,发现在自由边界条件(FREE)和周期边界条件(PERIOD)下的二维无规混合磁性系统的M-H磁化曲线的阶梯效应中存在异同.通过二维Ising模型和自旋组态的研究,解释自由边界条件下系统的平均自由度较周期边界条件下系统的自由度大是产生阶梯效应差异的原因. The magnetism of a twodimension ferromagnetic/antiferromagnetic random diluted magnetic system with free boundary condition and period boundary condition are studied and compared by micromagnetism methods. Difference is found in the step effect of M-H magnetization curve in the two systems. The step effects are discussed with the twodimension Ising model and the spin configuration. It's found that the mean freedom of a system with free boundary condition more than that of a system with period boundary condition results in the difference in the step effect of M-H magnetization curve.
出处 《福建师范大学学报(自然科学版)》 CAS CSCD 2003年第3期38-43,共6页 Journal of Fujian Normal University:Natural Science Edition
基金 教育部高等学校骨干教师资助计划(E0010022) 福建省自然科学基金资助项目(2000E146) 福建省创新人才基金资助项目(K3-070)
关键词 二维无规混合磁性系统 磁特性 微磁学 自由边界条件 阶梯效应 磁化强度 平均自由度 step effect magnetization mean freedom diluted magnetic system
  • 相关文献

参考文献9

  • 1翁臻臻 冯倩 黄志高 待发表.二维铁磁/反铁磁无规混合磁性系统磁特性的微磁学及Monte Carlo 研究.计算物理,.
  • 2Nowak U, Usadel K D. Structure of domains in random Ising magnets[J]. Phys. Rev. B, 1992, 46 (13): 8329--8335.
  • 3Fittipaldi I P , Ricardo J de Souza , Vasconcelos R J dos Santos. Phase diagrams of a quenched decorated Ising model with competing interactions [J]. J. Magn. Magn.Mater. , 1992, 104--107: 279--281.
  • 4Esser J , Nowak U , Usadel K D. Exact ground-state properties of disordered Ising systems[J]. Phys. Rev. B,1997,55(9):5866--5872.
  • 5Maletta H, Ehlers G . Magnetic order with frustrated moments in TbNiAl[J]. J. Magn. Magn. Mater, 1998, 177--181: 797--798.
  • 6Vogel E E, Cartes J, Altbir D, et al: Hysteresis cycles for ±J spin glasses[J]. J. Magn. Magn. Mater, 2001,226--230: 1248--1250.
  • 7Viitala E, Merikoski J, Manninen M, et al: Antiferromagnetic order and frustration in small clusters[J]. Phys.Rev. B, 1997, 55 (17): 11541--11551.
  • 8Hughes G F. Magnetization reversal in cobalt-phosphorus films[J]. J. Appl. Phys, 1983, 54 (9): 5306--5313.
  • 9Kodama R H , Berkowitz A E. Atomicscale magnetic modeling of oxide nanoparicles[J]. Phys. Rev. B, 1999, 59(9): 6321--6336.

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部