期刊文献+

心肌细胞自发性搏动节律的分岔和混沌现象 被引量:1

BIFURCATION AND CHAOS IN THE SPONTANEOUSLY BEATING RHYTHM OF CULTURED CARDIAC MYOCYTES
下载PDF
导出
摘要 心脏的节律是复杂的、非线性的;其节律复杂性的起源是多层次的。实验观察了心肌细胞自发性搏动节律的模式,以及改变细胞间耦合强度时节律的转化规律。表明在以正常灌流液灌流状态下,心肌细胞表现为多种不同的节律模式,可以是周期的,也可以是非周期的。当细胞间耦合强度下降时,心肌细胞节律发生转化,并经倍周期分岔进入混沌节律。实验结果有助于更好地理解心脏节律复杂性的起源。 Heart has the properties of a nonlinear oscillator network consisting of different oscillators and can generate complex beating rhythms. There are many causes responsible for the complexity of rhythm. In order to investigate the spontaneously beating rhythms of cultured cardiac myocytes without external stimulation, different patterns of endogenous rhythms in cardiac myocytes were displayed and a novel phenomena was found that the structure of period doubling bifurcation, as well as chaos series occurred in synchronous transition of rhythm while conductance of myocytes was decreased by heptanol. It was suggested that complex patterns of endogenous rhythm can been generated in synchronously beating cardiac myocytes directly and coupling strengths is one of the important cardiac controlling parameters.
出处 《生物物理学报》 CAS CSCD 北大核心 2003年第3期279-285,共7页 Acta Biophysica Sinica
基金 总装备部实验技术重点项目(01100301和01103302)
关键词 心肌细胞 自发性搏动节律 分岔 混沌 耦合强度 Cardiac myocytes Spontaneously beating rhythm Coupling strength Bifurcation Chaos
  • 相关文献

参考文献18

  • 1Rigney DR, Mietus JE, Goldberger AL. Is sinus rhythm"chaotic"? Measurement of lyapunov exponents (abstract).Circulation, 1990,82:236.
  • 2Babloyantz A, Destexhe A. Is the normal heart a periodic oscillator? Biol Cybern, 1988,58:203-211.
  • 3Glass L, Guevara MR, Shrier A, Perez R. Bifurcation and chaos in a periodically stimulated cardiac oscillator. Physica D, 1983,7:89-101.
  • 4Guevara MR, Shrier A, Glass L. Phase-locked rhythms in periodically stimulated heart cell aggregates. Am J Physiol,1988,254:H1-H 10.
  • 5Chialvo DR, Gilmour RF, Jalife J. Low dimensional chaos in cardiac tissue. Nature, 1990,343:653--657.
  • 6Lemple A, Ziv J. On the complexity of finite sequence. IEEE Trans, 1976,IT22,75-81.
  • 7Kasper F, Schuster HG. Easily calculable measure for the complexity of spatio-temporal patterns. Phys Rev A, 1987,36:836-842.
  • 8Theiler J, Eubank S, Longtin A, Galdrikian B, Farmer JD.Testing for nonlinearity in time series: the method of surrogate data. Physica D, 1992,58:77-94.
  • 9Pei X, Frank M. Characterization of low-dimensional dynamics in the crayfish caudal photoreceptor. Nature, 1996,379:.618-621.
  • 10Kimttra H, Oyamada Y, Ohshica H, Mori M, Oyamada M.Reversible inhibition of gap junctional intercellular communication synchronous contraction, and synchronism of intracellular Ca^2+ impulse in cultured neonatal rat cardiac myocytes by hepanol. Exp Cell Res, 1995,220:348-356.

同被引文献4

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部