期刊文献+

基于子波奇异性检测的水声信号去噪方法研究 被引量:4

Research of Underwater Acoustic Signal De-noising Method Based on Singularity Detection with Wavelet
下载PDF
导出
摘要 基于低信噪比、非平稳水声信号中,信号的有效频谱是固定的、噪声的频谱是随机的、信号频谱由代表水声信号特征的各基波和其对应的各次谐波构成的特点,提出了利用子波奇异性检测特性实现水声信号去噪的方法。该方法首先对水声信号进行多分辨分解,求取各尺度上信号的频谱成分;然后,根据最大尺度上最高的频谱幅度,确定该尺度上信号的有效频谱成分,再按照基波与谐波的关系,确定其它各级尺度上的有效频谱成分,去除奇异频谱;最后对去除奇异频谱后的信号进行频域-时域变换及子波重构。经对实测水声信号进行仿真,获得了较好的去噪效果。 Considering the characteristics of low signal noise ratio and non-stationary underwater acoustic signal, such as the fixed signal spectrums, the random noise spectrums, the mixed signal spectrums consisting of the fundamental waves and their harmonic etc., this paper proposes a method for underwater acoustic signal de-noising, which is based on the singularity detection with wavelet. This method includes three steps. The first step is the multi-resolution decomposition of the underwater acoustic signal, then to calculate the power spectrums on every scales. The second step is to confirm the largest amplitude of power spectrum on the largest scale, according to deciding the effective power spectrums on this scale. Then the effective power spectrums on every other scale are decided to wipe off the singularity power spectrums, based on the relationship between the fundamental waves and their harmonic. The third step is to transform the frequency domain signals into time domain signals on every scale for wavelet reconstruction. The simulation results of using real underwater acoustic data show that this method can get perfect effect.
出处 《系统仿真学报》 CAS CSCD 2003年第9期1328-1330,共3页 Journal of System Simulation
关键词 多分辨分解 奇异性检测 去噪 仿真 multi-resolution decomposition singularity detection de-noising simulation
  • 相关文献

参考文献4

  • 1Mallat S. Multiresolulion approximations and wavelet orthonomal bases of L^2(R) [J]. Trans. Of the American Mathematical Society, 1989,315(1): 68-87.
  • 2Mallat S. A theory for multiresolulion signal decomposilion: the wavelet representation[J], IEEE Tran on Pattern Analysis and Intelligence, 1989, 11(7): 674-693.
  • 3Mallat S, Zhong S. Characterization of signal from multiscale edges.IEEE Trans[J]. On Pattern analysis and machine intelligence, 1992,14(7): 710-732.
  • 4Mallat S, Hwang W L. Singularity detection and processing with wavelet[J]. IEEE Trans. on IT, 1992, 38(2): 617-643.

同被引文献32

  • 1吕俊军,吴国清,杜波.非高斯水声瞬态信号Power-Law检测[J].声学学报,2004,29(4):359-362. 被引量:24
  • 2张淑艳.基于平移不变量的摩擦焊检测信号降噪方法[J].系统仿真学报,2005,17(11):2721-2723. 被引量:8
  • 3李亚安,王军,李钢虎.基于自适应高斯核函数时频分布的水声信号处理研究[J].系统仿真学报,2006,18(11):3230-3233. 被引量:6
  • 4Mallat S, Zhong S. Characterization of signal from multiscale edges[J]. Pattern analysis and machine intelligence, 1992, 14(7): 710-732.
  • 5Mallat S, Hwang W L. Singularity detection and processing with wavelet[J]. IT, 1992, 38(2): 617-643.
  • 6Mallat S, Multiresolution approximations and wavelet orthonomal bases of L2(R) [J]. Trans. of the American Mathematical Society, 1989, 315(1): 68-87.
  • 7Donoho D L. De-noising by soft-thresholding[J]. IInf. Theory, 1995, 41(3): 613-627.
  • 8Cristobal G, Chagoyen M, Ramirez B E, Lopez J R. Wavelet based de-noising methods[A]. A Comparative study with applications in microscopy, Proc[C]. SPIE, 1996.
  • 9Basseville M, Nikiforov I. Detection of Abrupt Change[M]. Englewood Cliffs. NJ, Prentice Hall, 1993: 32-40.
  • 10Colonnese S, Sxarano G. Transient signal detection using higher order moment[J]. IEEE Transaction on Signal Processing, 1999, 47(2): 515-520.

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部