期刊文献+

任意非亏损矩阵特征灵敏度分析的模态展开法

Modal Expansion Method for Eigensensitivity Analysis of Arbitrary Non-Defective Matrices
下载PDF
导出
摘要 把特征向量的各阶导数表示成所有模态的线性组合,并利用左模态与右模态间的双正交性,首先导出了任意非亏损矩阵的重特征值的一阶导数所满足的特征值问题,然后根据此特征值问题无、有重根的情况,再导出了异导重特征值和等导重特征值对应的可微特征向量、特征值和特征向量各阶导数的一般计算公式。算例显示了方法的正确性。 By expressing the eigenvector derivatives as linear combinations of all of the modes and using the bi-orthogonality of the left modes with the right modes, the eigenvalue problem for first-order derivatives of repeated eigenvalues was derived first and then, according to the eigenvalue problem without or with multiple roots, the general formulas for calculating the differentiable eigenvectors and any order of derivatives of eigenvalues and eigenvectors of an arbitrary non-defective matrix with distinct or repeated first-order eigenvalue derivatives were derived. Numerical example shows the correctness of the method.
出处 《力学季刊》 CSCD 北大核心 2003年第3期351-357,共7页 Chinese Quarterly of Mechanics
关键词 非亏损矩阵 特征灵敏度分析 模态展开法 重特征值 non-defective matrix eigensensitivity analysis modal expansion method repeated eigenvalues
  • 相关文献

参考文献12

  • 1章永强,王文亮.广义特征值问题中重特征值的特征向量导数[J].力学学报,1994,26(1):81-89. 被引量:12
  • 2Nelson R B. Simplified calculation of eigenvector derivatives. AIAA J, 1976, 14(9) :1201-1205.
  • 3Mills-Curran W C. Calculation of eigenvector derivatives for stuctures with repeated eigenvalues. AIAA J, 1988, 26(7) :867-871.
  • 4Lee I W, Kim D O, Jung G H. Natural frequency and mode shape sensitivities of damped system, Part Ⅰ, distinct natural frequencies,Part Ⅱ, multiple natural frequencies. Journal of Sound and Vibration, 1999, 223(3) :399-424.
  • 5Zhang Z Y, Zhang H S. Eigensensitivity analysis of a defective matrix. AIAA J, 2001, 39(3):473-479.
  • 6Zhang Z Y, Zhang H S. Higher-order eigensensitivity analysis of a defective matrix. MAA J, 2002, 40(4) : 751-757.
  • 7Fox R L, Kapoor M P. Rates of change of eigenvalues and eigenvectors. AIAA J, 1968, 6(12) :2426-2429.
  • 8Wang B P. Improved approximate methods for computing eigenvector derivatives in structure dynamics. AIAA J, 1991, 29(6):1018-1020.
  • 9Bernard M L, Bronowick A J. Modal expansion method for eigensensitivity with repeated roots. AIAA J, 1994, 32 (7) :1018-1020.
  • 10Zhang O, Zerva A. Iterative method for calculating derivatives of eigenvectors. AIAA J, 1996, 34(5) :1088-1090.

二级参考文献2

  • 1Wei F S,1992年
  • 2蒋尔雄,线性代数,1978年

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部