期刊文献+

功能梯度压电板条中电绝缘型运动裂纹的电弹性场 被引量:1

Electroelastic Field for an Impermeable Moving Crack in a Functionally Graded Piezoelectric Strip
下载PDF
导出
摘要 基于三维弹性理论和压电理论,对材料系数按指数函数规律分布的功能梯度压电板条中的反平面运动裂纹问题进行了求解。利用Fourier积分变换方法将电绝缘型运动裂纹问题化为对偶积分方程,并进一步归结为易于求解的第二类Fredholm积分方程。通过渐近分析,获得了裂纹尖端应力、应变、电位移和电场的解析解,给出了裂纹尖端场各个变量的角分布函数,并求得了裂纹尖端场的强度因子,分析了压电材料物性梯度参数、几何尺寸及裂纹运动速度对它们的影响。结果表明,对于电绝缘型裂纹,功能梯度压电板条中运动裂纹尖端附近的各个场变量都具有-1/2阶的奇异性;当裂纹运动速度增大时,裂纹扩展的方向会偏离裂纹面。 Based on the three-dimensional theory of piezoelectric elasticity, the anti-plane moving crack problem was solved for a piezoelectric strip with the material gradient properties being in the form of exponential functions. By using the Fourier transform, the problem involving an impermeable anti-plane moving crack is first reduced to two pairs of dual integral equations and then into Fredholm integral equations of the second kind. The closed forms of the singular stress, strain, electric displacement and electric field are obtained by using asymptotic expansion, and we also got the angular distribution function of the field variables and the intensity factors of relevant quantities near the crack tip. Finally, the influence of material properties gradient, geometrical size, and the crack moving velocity on the intensity factors was studies. The results obtained for impermeable crack show that the field variables near the crack tip in a functionally graded piezoelectric strip all possess the square root singularity; the moving crack has a tendency to deviate from the crack face when the velocity is increased.
出处 《力学季刊》 CSCD 北大核心 2003年第3期371-378,共8页 Chinese Quarterly of Mechanics
基金 国家自然科学基金(10072041) 国家杰出青年科学基金(10125209) 高等学校优秀青年教师教学科研奖励基金
关键词 功能梯度压电板条 反平面问题 应力强度因子 电绝缘型运动裂纹 functionally graded piezoelectric strip anti-plane shear problem stress intensity facotr impermeable moving crack
  • 相关文献

参考文献3

二级参考文献34

  • 1杜善义,梁军,韩杰才.含刚性线夹杂及裂纹的各向异性压电材料耦合场分析[J].力学学报,1995,27(5):544-550. 被引量:12
  • 2陈增涛,余寿文.反平面冲击下压电介质的裂纹尖端场[J].科学通报,1997,42(15):1613-1617. 被引量:3
  • 3Y. E. Pak.Linear electro-elastic fracture mechanics of piezoelectric materials[J]. International Journal of Fracture . 1992 (1)
  • 4Robert M. McMeeking.Electrostrictive stresses near crack-like flaws[J]. ZAMP Journal of Applied Mathematics and Physics . 1989 (5)
  • 5Ranjit S. Dhaliwal,Brij Mohan Singh.On the theory of elssticity of a nonhomogeneous medium[J]. Journal of Elasticity . 1978 (2)
  • 6Chen,Z.T,Worswick,M.J.Anti-plane mechanical and in-plane cleetric time-dependent load applied to two coplanar cracks in piezoelectric ceramic material. Theoretical and Applied Fracture Mechanics . 2000
  • 7Parton,V. Z.Fracture mechanics of piezoelectric materials. Acta Astronautica . 1976
  • 8Deeg WF.The Analysis of Dislocation, Crack and Inclusion Problems in Piezoelectric Solids. . 1980
  • 9McMeeking R M.Electrostrictive stresses near crack-like flaws. Journal of Applied Physiology . 1989
  • 10Pak Y. E.Crack extension force in a piezoelectric material. Journal of Applied Mechanics . 1990

共引文献14

同被引文献20

  • 1Yoffe E Y. The moving griffith crack [ J ]. Philosophical Magazine, 1951, 42(7) : 739 -750.
  • 2Hu Ke-qiang, Li Guo-qiang. Constant moving crack in a magnetoelectroelastic material under anti-plane shear loading [ J]. International Journal of Solids and Structures, 2005, 42(9 - 10) : 2823 -2835.
  • 3Hermann K P, Komarov A V, Loboda V V. On a moving interface crack with a contact zone in a piezoelectric bimaterial [ J ]. International Journal of Solids and Structures, 2005, 42( 16- 17): 4555-4573.
  • 4Lapusta Y, Komarov A, Labesse-Jied F, et al. Limited permeable crack moving along the interface of a piezoelectric bi-material [ J ]. European Journal of Mechanics-A/Solids, 2011, 30(5) : 639 -649.
  • 5Hu Ke-Qiang, Kang Yi-Lan, Qin Qing-Hua. A moving crack in a rectangular magnetoelectroelastic body [ J ]. Engineering Fracture Mechanics, 2007, 74(5) : 751 - 770.
  • 6Xie C, Liu Y W. Cracking characteristics of a moving screw dislocation near an interfacial crack in two dissimilar orthotropic media [ J ]. Theoretical and Applied Fracture Mechanics, 2008, 50(3): 214-219.
  • 7Sih G C, Jones R. Crack size and speed interaction characteristics at micro-, meso- and macro-scale [ J ]. Theoretical and Applied Fracture Mechanics, 2003, 39 (2) : 127 - 136.
  • 8Tang X S, Sih G C. Kinetics of microcrack blunting ahead of macrocrack approaching shear wave speed [ J ]. Theoretical and Applied Fracture Mechanics, 2004, 42(2) : 99 -130.
  • 9Rosakis A J, Samudrala O, Coker D. Cracksfaster than the shear wave speed [J]. Science, 1999, 284(5418) : 1337 - 1340.
  • 10Sih G C, Tang X S. Dual scaling damage model associated with weak singularity for macro-seopie crack possessing a micro-/meso-scopie notch tip [ J ]. Theoretical and applied fracture mechanics, 2004, 42 ( 1 ) : 1 - 24.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部