期刊文献+

基于置信度的手写体数字识别多分类器动态组合

Multiple Classifiers Dynamical Combination of Script Character Recognition Based on Confidence
下载PDF
导出
摘要 多分类器组合利用不同分类器、不同特征之间的互补性,提高了组合分类器的识别率。传统的组合方法里,各分类器在组合中所承担的角色是固定的,而实际应用中,对于不同的测试样本,每个分类器识别结果的可信度是不同的。该文根据分类器置信度理论,提出了各类别的置信度。用测试样本自身的置信度信息实现分类器的动态组合,并把这种动态组合方法具体应用到手写体数字的识别。这种方法还可以在不影响已有数据的情况下添加新的分类器进行组合。 Multiple classifiers combination makes use of the complementarities of different classifiers and different characters to improve recognition correctness.In traditional combination methods, each classifier is taken on as a fixed role. But in fact the reliability of very classifier is different for different testing pattern. This paper proposes each class confidence based on classifier confidence theory, realizes a dynamical combination method with each class confidence, and applies this method to script character recognition. New classifiers can be appended by using the method without affecting former training data.
出处 《计算机工程》 CAS CSCD 北大核心 2003年第16期103-105,共3页 Computer Engineering
关键词 置信度 动态分类器组合 各类别置信度 Confidence Dynamical classifiers combination Each class confidence
  • 相关文献

参考文献5

  • 1林晓帆,丁晓青,吴佑寿,陈友斌,刘今晖.字符识别的置信度分析[J].清华大学学报(自然科学版),1998,38(9):47-50. 被引量:13
  • 2Kittlcr J,Robcrt M H,Duin P W et al.On Combining Classifiers.Pattern Analysis and Machine Intelligence,1998,20(3):226-239.
  • 3Domingos P.A Unified Biers-variance Decomposition, Technical Report, Departmcnt of Computer Science and Engineering, University of Washington,Seattle, WA,2000.
  • 4Trcsp V,Taniguchi M.Combining Eslimators Using Non-conslant Wcighting Functions.Advances in Neural Information Processing Systems, 1995.( 7):419-426.
  • 5Merz C.Dynamical Selection of Learning Algorithms.In:Fisher D,Lenz H J(Eds.),Artificial Intclligence and Statistics, Springer-Vcrlag,NY,1996.

二级参考文献5

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部