期刊文献+

基于BP网络的入侵检测方法 被引量:4

A Back-propagation Neural Network-based Intrusion Detection Ap proach
下载PDF
导出
摘要 论文提出了一种基于BP神经网络的入侵检测方法。该方法对特征数据进行了预处理,利用改进的BP算法的学习能力和快速识别能力,实现了对用户行为的检测,尤其是在识别以前没有观察到的未知攻击方面具有较好的性能。 This paper describes new back-propagation neural network-based intrusion detection approach.Based on the feature data that should be pretreated,the approach employs improving back-propagation arithmetic that provide the ca-pability of learning and quick classification,and can be used for detection of user behavior.In particular,the approach gains good performance in recognizing future unseen attacks.
出处 《计算机工程与应用》 CSCD 北大核心 2003年第26期156-157,197,共3页 Computer Engineering and Applications
基金 国家部级项目(编号:20019181201)
关键词 入侵检测 误用检测 异常检测 神经网络 Intrusion detection,Misuse detection,Anomaly detection,Neural networks
  • 相关文献

参考文献5

  • 1Dorothy E Denning.An intrusion detection model[J].IEEE Transac- tions on Software Engineering, 1987 ; SE- 13 (2) :222-232.
  • 2Jake Ryan, Meng-Jang Lin, Risto Miikkulainen.Intrusion detection with neural networks[C].Advances in Neural Information Processing Systems 10(Proceedings of NIPS'97) ,Cambridge,MA:MIT Press. 1998.
  • 3James Cannady.Artificial Neural Networks for Misuse Detection[C]. In:Proceedings of the 21st National Information Systems Security Conference (NISSC'98), 1998.
  • 4Anup K Ghosh,Aaron Schwartzbard.A study in using neural networks for anomaly and misuse detection[C].In:Proceedings of the 8th USENIX Security Symposium,Washington,D C,USA,1999.
  • 5Richard P Lippmann,Robert K Cunningham.Improving intrusion de- tection performance using keyword selection and neural networks[C]. In :Web Proceedings of the 2nd International Workshop on Recent Advances in Intrusion Detection(RAID'99), 1999.

同被引文献25

  • 1王素文,胡松涛,王慧强.一种基于移动agent的入侵检测系统框架研究[J].应用科技,2005,32(3):49-51. 被引量:4
  • 2满红芳,宿超,马春清.基于Agent的分布式入侵检测系统模型的研究与设计[J].山东电大学报,2006(1):38-39. 被引量:3
  • 3Barber Richard. TheEvolution of Intrusion DetectionSystems-theNext- Step. computer&Security ,2001,28 ( 5 ) : 132 - 145.
  • 4Susan C L,David V H. Training a Neural-network Based Intrusion Detector[ J]. IEEE Transaction son systems, manandcybemetics-parta : System and Humans,2001,31 (4) :294 - 299.
  • 5Balajinath B, Raghavan S V. Intrusion detection through learning behavior model [ J ]. Computer Communications, 2005,24 ( 12 ) : 1202 -1212.
  • 6Steven A H. An Immunological Model of Distributed Detection and Its Application Computer Security[ D ]. PhDthesis. NEWmexico. The University of NewMexico, 1999.
  • 7Manganaris, et al. A data mining analysis of RTID alarms [ J ] Computer Networks,2004, 34(4) :571 -577.
  • 8Wdski Rich.Forecasting network performance to support dynamic scheduling using network weather serving.http://citescer.nj.nec.com/wolski98dynamically.html, 1998-01-07/2002-10- 10.
  • 9Basu S Mukherjee.A Time series models for internet traffic[C].In:proc IEEE INFOCOM'96,San Francisco,CA, 1996;2:611-620.
  • 10Bruce B Lowekamp William,Mary Brian Tiemey.LBNL Les Conttrell SLAC Enabling Network Measurement Portability Through a Hierarchy of Characteristics.IEEE, 2003.

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部