摘要
论文提出了一种基于BP神经网络的入侵检测方法。该方法对特征数据进行了预处理,利用改进的BP算法的学习能力和快速识别能力,实现了对用户行为的检测,尤其是在识别以前没有观察到的未知攻击方面具有较好的性能。
This paper describes new back-propagation neural network-based intrusion detection approach.Based on the feature data that should be pretreated,the approach employs improving back-propagation arithmetic that provide the ca-pability of learning and quick classification,and can be used for detection of user behavior.In particular,the approach gains good performance in recognizing future unseen attacks.
出处
《计算机工程与应用》
CSCD
北大核心
2003年第26期156-157,197,共3页
Computer Engineering and Applications
基金
国家部级项目(编号:20019181201)
关键词
入侵检测
误用检测
异常检测
神经网络
Intrusion detection,Misuse detection,Anomaly detection,Neural networks