期刊文献+

车间作业调度问题的染色体非完整表示方法 被引量:1

Chromosome with incomplete representation for Job shop scheduling problems
下载PDF
导出
摘要 提出了一种用于解决车间作业调度问题的新的遗传染色体编码方法———非完整编码。其特征是基因数少于工序数。剩余基因采用简单的启发式规则方法进行解码。考证结果表明,非完整表示方法能够在合理的时间内得到临近最优解,通过删除高冗余和很少有实际意义的尾部基因,可以使遗传更有效。 We present genetic algorithm with an incomplete representation and apply it to the Jobshop scheduling problems.The important characteristic lies in that the number of genes is less than the number of operations.The rest of the schedule is completed by a simple heuristic rule.The results imply that the nearly best solution can be found in a national time interval by incomplete genes presentation.And incomplete genes presentation make the genetic algorithms more efficient by canceling high redundancy at the tail of the chromosome and little significance of rear genes.
作者 徐兵 于骏一
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2003年第4期48-50,共3页 Journal of Jilin University:Engineering and Technology Edition
基金 国防科委3DM工程资助项目。
关键词 车间作业调度 染色体 基因 编码 遗传算法 Job-shop scheduling problem chromosome genes representation genetic algorithm
  • 相关文献

参考文献7

  • 1GAREY M,JOHNSON D,SETHI R. The complexity of flowshop and jobshop scheduling[J].Mathematics of Operations Research, 1976,1:117 - 129.
  • 2DAVIS L. Job-shop scheduling with genetic algorithm[ A]. Proc of the 1^st Int Cotzf. on Genetic Algorithms[ C], Lawrence Erlbaum Associates, 1985 : 136 - 140.
  • 3CHENG R, GEN M. A tutorial survey of job-shop scheduling problems using genetic algorithms-I. Representation[J].Computer Ind Eng, 1996,30 (4) : 983 - 997.
  • 4DORNDORF U,PESCH E. Evolution based learning in a job-shop environmentCJ]. Computers and Operations Research,1995,22: 25 - 40.
  • 5BEAN J. Genetic algorithms and random keys for sequencing and optimization[J]. ORSA Journal on Computing, 1994,6(2):154- 160.
  • 6BIERWIRTH C.A generalized permutation approach to job-shop scheduling with genetic algorithms[J ]. OR Spektnun, 1995,17(2 - 3) :87 - 92.
  • 7IKUBOTA A. Study on optimal scheduling for manufacturing system by genetic algorithms[D]. Ashikaga Inatitute of Technology, Ashikaga, Japan, 1995.

同被引文献8

  • 1王凌,吉利军,郑大钟.基于代理模型和遗传算法的仿真优化研究[J].控制与决策,2004,19(6):626-630. 被引量:13
  • 2李彬彬,王凌,郑大钟.基于插值评价的遗传算法及其在参数估计中的应用[J].化工自动化及仪表,2004,31(6):14-17. 被引量:2
  • 3Wang Guo-lei, Lin Lin, Zhong Shi sheng. Orderoriented hierarchical planning and scheduling for discrete manufacturing enterprise[J]. Applied Mechanics and Materials, 2008, 10-12:114-120.
  • 4Salami M, Hendtlass T. A fast evaluation strategy for evolutionary algorithms[J]. Applied Soft Computing, 2003,22(3) :156-173.
  • 5Cheng R, Gen M. Resource constrained project scheduling problem using genetic algorithms[J]. International Journal of Intelligent Automation and Soft Computing, 1997,3(3) :273-286.
  • 6Cheng R, Gen M. source constrained An evolution program for the reproject scheduling problem[J]. Computer Integrated Manufacturing, 1998,11 ( 3 ) :274-287.
  • 7Bert D R, Herroelen W. On the use of the complexity index as a measure of complexity in activity net works [J]. European Journal of Operational Re search, 1996,91:347-366.
  • 8姜思杰,徐晓飞,战德臣,杨波.大型单件小批生产的计划与控制模式[J].计算机集成制造系统-CIMS,2001,7(2):1-5. 被引量:32

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部