期刊文献+

基于小波变换的1/f类分形信号的参数估计 被引量:3

Parameter estimation of 1/f-type fractal signal via wavelet transformation
下载PDF
导出
摘要 为了估计1/f类分形信号模型———分数布朗运动的自相似参数,对离散分数高斯噪声进行了Haar小波变换。根据细节小波系数方差和尺度的关系,在最小二乘法的基础上推导出一种估计算法。在仿真中,和EM算法相比较,以方均根误差为指标说明了本文方法的有效性和优越性,同时讨论了数据长度和小波分解的尺度对本文算法精度的影响。 In order to estimate the Hurst parameters of the 1/ftype fractal signal, the wavelet transformation is used to deal with the discrete fractal Gaussian noise.Using the least square algorithm,a method for estimating the Hurst parameters is developed.A numerical example is given to illustrate the effect of the data length on the computing accuracy of the present approach.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2003年第4期100-104,共5页 Journal of Jilin University:Engineering and Technology Edition
关键词 1/f类分形信号 分数布规运动 正交小波变换 最小二乘法 1/f-type fractal signal fractal Brownian motion orthogonal wavelet transform least square algorithm
  • 相关文献

参考文献10

  • 1曹坤勇,于盛林,李光.基于正交小波变换合成拟1/f过程[J].吉林大学学报(工学版),2003,33(2):69-74. 被引量:5
  • 2MANDELBROT B, VAN NESS J. Fractional brownian motions, fractional noises and applications[ J ]. SIAM Rev, 1968,10 : 422 - 423.
  • 3FLANDRIN P. On the spectrum of fractional Brownian motion[J]. IEEE Trans. Inform. Theory,1989,35:197- 199.
  • 4GACHE N,FLANDRIN P,GARREAU D. Fractal dimension estimators for fretional Brownlan motions[Z]. Proc IEEE Int Conf. on Acoustics Speech and Signal Processing, 1991:3557- 3560.
  • 5WORNELL G W, OPPENHEIM A V. Estimation of fractal signals from noisy measurements using wavelets[J]. IEEE Trans. Signal Proeessina, 1992,40(3) :611 - 623.
  • 6KAPLAN L M, KUO C J. Fractsl estimation from noisy measurements via discrete ractional Gaussian noise(DFGN) and the Hasr basis[Z]. Univ of Southern California, Los Angeles, Tech Rep. SIPI 212,July 1992.
  • 7CORSINI G,SALETTI R. Design of a digital 1/f noise simulator[Z]. Proc Noise Physical Syst. and 1/f Noise,University de Montreal, 1987: 82 - 86.
  • 8ELI Shusterman. Analysis and synthesis of 1/f processes via shannon wavdets[J]. IEEE Transaction on Signal Processing,1998,46:1698 - 1702.
  • 9PYKE R. One dimensional brownian motion[R]. MAT335H1 - Chaos,Fractals,and Dynamics Aprial,2002.
  • 10FLANDRIN P,GACHE N. Fractal dimension estimators for fractional brownian motiona[J ]. International Conference on Acoustics,Speech and Signal Processing, 1991,5:3557 - 3560.

二级参考文献9

  • 1KESHNER M S.1/f noise[J].Proc.IEEE,1982,70(2):212-218.
  • 2VAN DER ZIEL A.On the noise spectra of semi-conductor noise and of fliker effect[J].Physica,1950,16:359-372.
  • 3BARTON R J,POOR V H.Signal detection in fractional gaussian noise[J].IEEE Trans Inform.Theory,1988,34:943-959.
  • 4WORNELL G W.A Kahunen-Loeve-Like expansion for 1/f processes via wavelets[J].IEEE Transaction on Information Theory,1990,36(4):859-861.
  • 5WORNELL G W.Wavelet-based representations for the 1/f family of fractal processes[J].Proceedings of the IEEE,1993,81:1428-1450.
  • 6SHUSTERMAN Eli,FEDER Meir.Analysis and synthesis of 1/f processes via shannon wavelets[J].IEEE Transaction on Signal Processing,1998,46(6):1698-1702.
  • 7ANTAL T,DROZ M,GYORGYI G,et al.1/f noise and extreme value statistics[J].Physical Review Leters,2001,87(24):240601.
  • 8WALDEN Andrew T.Wavelet analysis of discrete time series[Z].http∥dmawww.epfl.ch/~choulat/3e.cycle.romand/percival.pdf,2001.
  • 9ALIEVA Tatiana,BARBE Andre.Macroscopic 1/f behavior of fractal signals generated by additive substitution[J].IEEE Transaction on Information Theory,2000,46(6):2261-2268.

共引文献4

同被引文献36

  • 1初秀民,李永,严新平,万剑.基于微观形貌特征的沥青路面抗滑性能评价研究进展[J].交通与计算机,2007,25(1):61-65. 被引量:22
  • 2Gendy A E,Shalabby A. Mean profile depth of pavement surface macrotexture using photometric stereo techniques[J]. Journal of Transportation Engineering,2007,133 (7) :433-440.
  • 3Cenek P D,Fong S,Donbavand J. Skid resistance the influence of alluvial aggregate size and shape[C]// Proceedings-Conference of the Australian Road Research Board, Transport, 1998 : 238-259.
  • 4Kokkalis A G, Tsohos G H,Panagouli O K. Consideration of fractals potential in pavement skid resistance evaluation[J]. Journal of Transportation Engineering, 2002,128(6) : 591-595.
  • 5Kokkalis A G, Panagouli pavement skid resistance O K. Fractal evaluation of variations I: Surface wetting[J]. Chaos, Solitons and Fractals, 1998,9 ( 11 ) : 1875-1890.
  • 6Panagouli O K, Kokkalis A G. Skid resistance and fractal structure of pavement surface [J]. Chaos, Solitons and Fractals, 1998,9 (3): 493-505.
  • 7KAPLAN D T, PILAGRAM B. Nonstationarity and 1/f noise characteristics in heart rate [J]. Computers in Cardiology, 1996,11 (8) : 169- 172.
  • 8YAMAMOTO M, NAKAO M, NAKAMURA N. 1/f fluctuations of cat's inter-heartbeat intervals in extremely low frequency range[C]//ICNF99, 2002:191-194.
  • 9HAUSDORFF J M, PENG C K. Muhiscaled randomness: a possible source of 1/f noise in biology[J]. Physical Review E, 1996, 54(2): 2154-2155.
  • 10EDOARDO Milotti. 1/f noise: a pedagogicalreview, Physics [ DB/OL], http://arxiv. org/pdf/physics/0204033.

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部