期刊文献+

非自治时滞微分方程正周期解的存在性(英文) 被引量:4

Existence of positive periodic solutions for generaldelayed nonautonomous differential equation
下载PDF
导出
摘要 应用Krasnoselskii锥映射不动点定理,研究了具一般时滞非线性非自治Logistic方程的ω-周期解的存在性,获得了存在正周期解的充分条件. In this paper,by using the Krasovskii's cone fixed point theorem,we obtain sufficient conditions for the existence of positive periodic solutions for general delayed nonlinear nonautonomous logistic equation.
作者 廖新元
出处 《纯粹数学与应用数学》 CSCD 2003年第3期268-273,共6页 Pure and Applied Mathematics
关键词 时滞微分方程 锥映射不动点定理 正ω-周期解 delay differential equation,cone fixed point theorem,positive periodic solution
  • 相关文献

参考文献13

  • 1Guo Dajun. Nonlinear Functional Analysis (in Chinese)[M]. Jinan:Science and Technology Press of Shangdong Province, 1985,286 - 329.
  • 2Lalli B S, Zhang B G. On a periodic delay population model[J]. Quart Appl Math, 1994,LII:35- 42.
  • 3Yan J R, Feng Q X. Global attractivity and oscillation in a nonlinear delay equation[J]. Nonlinear Analysis, 2000,43:101- 108.
  • 4Li Y. Periodic solutions of a periodic delay predator--prey system[J]. Pro Amer Math Soc, 1999,127(5): 1331- 1335.
  • 5Li Y. Periodic solutions for delay Lotka-volterra competition system[J]. J Math Anal Appl, 2000,246(2) :230-244.
  • 6Knang Y. Delay differential equations with applications in population dynamics[M]. Boston:Academic Press, 1993.
  • 7Shi B, Chen Y. A prior bounds and stability of solutions for a volterra reaction-diffusion equation with infinite delay[J]. Nonlinear Analysis, 2001,44:97- 121.
  • 8Jiang Daqing. Existence of position periodic solutions for non-autonomous delay different equations[J].Chinese Ann of Math,1999,20A(6):715-720.
  • 9Fan Meng, Wang Ke. Existence of position periodic solutions of an integral differential equation system[J]. Acta Math. Sinica (in Chinese) ,2001,44(3) :437-444.
  • 10Erbe H, Wan H. On the existence of periodic solutions of ordinary differential equations [J]. Proc Amer Math Soc, 1994,120 : 743- 748.

同被引文献9

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部