期刊文献+

变形观测数据处理粗差的定位与剔除 被引量:5

Localization and rejection of gross errors in deformation observation data processing
下载PDF
导出
摘要 在变形观测数据处理中,当变形值与观测误差的大小相关不显著时,对二者进行判断,需要进行严密的精度分析和统计检验。目前对数据进行检核,实现粗差定位,其主要方法为数理统计中的统计检验:对各周期观测值分别进行平差,进行F整体检验,检验结果存在超限误差时,进行局部检验。针对变形观测的特点,本文提出F_0整体检验法、F_1局部检验法实现粗差探测,不必剔除含粗差观测值,采用从验后方差理论导出的选择权迭代法计算,结合文献一算例,得出合理的结论,减少了许多计算工作量。 In the data-processing of the deformation measurement, the deformation value is almost equal to the error. In order to distinguish them, it is necessary to analyse carefully its accuracy and to test it by the method of hypothesis. Checking the observations and detecting of gross errors, are the main methods in hypothesis test. It is neccessary to adjust with all the periodic observations and do the integral test and the partial test. Due to the condition of deformation measurement, new methods of the integral test and the partial test are put forward. The observations with gross errors must not be rejected, the chosen iteration method is applied to the computation. An example of the leveling networks is introduced. After checking, a good result is obtained and can be applied in practical work.
机构地区 华东有色测绘院
出处 《桂林工学院学报》 2003年第3期310-313,共4页 Journal of Guilin University of Technology
关键词 粗差 统计量 假设检验 F0整体检验法 F1局部检验法 gross error statistical value hypothesis test F0 the integral test F1 the partial test
  • 相关文献

参考文献2

二级参考文献11

共引文献8

同被引文献22

  • 1陈西强,黄张裕.抗差估计的选权迭代法分析与比较[J].测绘工程,2010,19(4):8-11. 被引量:48
  • 2朱建军.变形检验的Bayes方法[J].勘察科学技术,1995(6):44-48. 被引量:2
  • 3李浩军,唐诗华,黄杰.抗差估计中几种选权迭代法常数选取的探讨[J].测绘科学,2006,31(6):70-71. 被引量:37
  • 4杨述武.普通物理实验(第2版)[M].北京:高等教育出版社,2003.
  • 5Golmie N, Chevrollier N. Techniques to Improve Bluetooth Performance in Interference Environments [J]. Proc. IEEE MILCOM,2001 (1) :581-585.
  • 6同济大学大地测量研究室.控制测量学(下册)[M].北京:测绘出版社,1988.273-280.
  • 7李国正,王猛,曾华君,等译.支持向量机导论[M].北京:电子工业出版社,2005.
  • 8李德仁.误差处理和可靠性理论[M].北京:测绘出版社,1998
  • 9Vapnik,V. The Nature of Statistical Learning Theory[M],New York:Springer-Verlag,1995.
  • 10Druker,H. Butges,C J. Kaufman,L C. Smola,A. Vapnik,V. Support vector regression machines [J],Advances inNeural Information Processing Systems,1997,9:155-161.

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部