期刊文献+

低pH及铝和钙对三种藻生长的影响 被引量:1

THE EFFECTS OF LOW pH、ALUMINIUM AND CALCIUM ON THE GROWTH OF THREE ALGAE
下载PDF
导出
摘要 本文在实验室条件下研究了低pH对污席藻(Phormidium lucidum)、斜生栅列藻(Scenedsmus obeiquus)、角菱形藻(Nitzschia angustata)生长的影响,同时还研究了低pH和铝对上述三种藻的协同作用以及钙离子在低pH和铝离子对藻类联合毒性中的缓解作用.结果表明:在pH4.0~6.0的培养条件下,三种藻的生长速率随pH的下降而降低.污席藻和斜生栅列藻6天EC_(50)值分别为pH5.88±0.10、pH5.42±0.02、角菱形藻8天EC_(50)值为pH5.29±0.08.。三种藻对低pH的敏感性顺序为:污席藻>斜生栅列藻>角菱形藻.在酸性pH下加铝以后三种藻的生长均受到抑制.污席藻和斜生栅列藻6天EC_(50)值分别为0.38mgAl/l和0.89mgAl/l.角菱形藻8天EC_(50)值为0.98mgAl/l.在钙浓度增大时这三种藻在低pH(加铝或不加铝)下的生长有一定程度的恢复. The effects of low pH on the growth of Phormidium lucidum, Nitzschia angustata and Scenedesmus obeiquus were studied under laboratory conditions. The synergistic action of low pH and Al and the amelioration of Ca to their effects were also investigated. The results showed that within a pH range 4.0~6.0, the growth rates of these algae declined as the pH fell. The 6-day EC_(50) values of P.lucidum and S.obeiquus were pH 5.88±0.10, pH 5.42±0.02 respectively. The 8-day EC_(50)value of N. angustata was pH 5.29 ± 0.08. Their sensitivity order to low pHwas: P.lucidum>S.obeiquus>N.angustata. The addition of aluminium at acidic pH levels resulted in the inhibition of growth of these algae. The 6-day EC_(50)values of P.lucidum and S. obeiquus were 0.38 and 0.89 mgAl/1 respectively. The EC_(50) value of N. angustata was 0.98 mgAl / 1. The growth of these algae at low pH levels (with or without aluminium addition) ercovered partially at higher Ca Concentrations.
出处 《南京大学学报(自然科学版)》 CAS CSCD 1992年第4期584-593,共10页 Journal of Nanjing University(Natural Science)
基金 国家"七五"科技攻关项目"酸雨"的子课题"华南地区酸雨对小态影响和经济损失估计[75-58-5-2]的部分工作
关键词 污席藻 斜生栅列藻 角菱形藻 low pH aluminium calcium growth rate Phormidium lucidum Scenedesmus obeiquus Nitzschia angustata
  • 相关文献

参考文献2

  • 1张宜春,物理营养原理,1987年
  • 2华汝成,单细胞藻类的培养与利用,1986年

同被引文献25

  • 1Shen H,. Song L. Comparative studies on physiological re- sponses to phosphorus in two phenotypes of bloom-forming Microcystis[J]. Hydrobiologia, 2007, 592(1): 475-486.
  • 2Martin J H, Fitzwater S E, Gordon R M. Iron deficiency limits phytoplankton growth in Antarctic waters[J]. Global Biogeochemical Cycles, 1990, 4(1): 5-12.
  • 3Martin J H, Fitzwater S E. Iron deficiency limits phyto- plankton growth in the north-east Pacific subarctic[J]. Na- ture, 1988, 331(6154): 341-343.
  • 4Shapiro J. Iron available to algae. Chemical environment in the aquatic habitat[J]. North-Holland, 1967: 219-228.
  • 5Ahem K S, Ahem C R, Udy J W. Nutrient additions generate prolific growth Of Lyngbya majuscula (cyanobacteria) in field and bioassay experiments[J]. Harmful Algae,2007, 6(1): 134- 151.
  • 6Van Boekel W. Phaeocystis colony mucus components and the importance of calcium ions for colony stability[J].Marine Ecology-Progress Series, 1992, 87: 301-30].
  • 7Naito K, Matsui M, Imai I. Ability of marine eukaryotic red tide microalgae to utilize insoluble iron[J]. Harmful Algae, 2005, 4(6): 1021-1032.
  • 8Sunda W G, Huntsman S A. Interactive effects of external manganese, the toxic metals copper and zinc, and light in controlling cellular manganese and growth in a coastal di- atom[J]. Limnol Oceanogr, 1998, 43(7): 1467-1475.
  • 9P6rez P, Est6vez-Blanco, Beiras R, et al. Effect of copper on the photochemical efficiency, growth and chlorophyll a biomass of natural phytoplankton assemblages[J]. Environ- mental Toxicology and Chemistry, 2006, 25(1): 137-143.
  • 10Kehr J C, Zilliges Y, Springer A, et al. A mannan binding lectin is involved in cell-cell attachment in a toxic strain of Microcystis aeruginosa[J]. Mol Microbiol,2006, 59(3): 893- 906.

引证文献1

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部