摘要
本文介绍了一种对三维散乱点插值的二次Bernstein-Bezier c^1曲面构造方法。首先,不规则分布的3D数据点{(x_i,y_i,z_i),i=1,2,3,…,N}被投影到X-Y平面上,并按本文提出的能够处理任意区域内不规则分布点的三角化算法,自动形成平面三角形插值网络。然后按照所形成的三角形网络和网络结点处的函数值,分别估计出每一数据点上的一阶导数值。最后本文给出了用二次多项式表示的三角形网络上的Bernstein-Bezier c^1曲面插值公式,并指出了这一曲面插值模型在某些应用领域的广阔前景。
This article introduces a method of constructing the c1 quadratic Bernstein-Bezier surface of 3D arbitrary points. Firstly these points {( xiyizi)i = 1,2,3,...,N} are cast onto the X-Y plane and automatically triangulated according to a new algorithm designed by the authors. Secondly, by the function value and the triangular mesh,the derivativas on each point can be approximatelly calculated. Finally,an optimal c1 Bernstein-Bezier interpolation formula on the triangular mesh is put forward by the authors and some application prospects for this cl surface model are described.
基金
国家自然科学基金
关键词
CAD
曲面拟合
插值
三角化
computer aided design, surface fitting, interpolation. triangulation. arbitrary points ,Bezier net