摘要
确定Ramsey数的构造性下界是组合数学中很有意义而又非常困难的课题,迄今仅有个别结果。本文将研究一类组合竞赛,给出任意Ramsey数R(k,l;r)的构造性(算法性)下界。
The constructive lower bounds for the classic.bi-colored Ramsey numbers R(k,l;r) are obtained.In the special case of k=l and r =2, the results here enormously improve that of P. Frankl and R.M. Wilson. Moreover, the lower bound,of R(l , l ;2) proved in this paper by the constructive method is a little better even than the classic result of P. Erdos which is.however,obtained with the probabilistic argument(i. e. existence proof).
出处
《南京邮电学院学报》
北大核心
1992年第3期78-82,共5页
Journal of Nanjing University of Posts and Telecommunications(Natural Science)
基金
邮电部高等院校中青年教师科研基金
关键词
拉姆塞数
组合数学
构造
下界
Ramsey numbers
Combinatorial mathematics, Hypergraph , Constructive method
Lower bounds