摘要
Expanded bed adsorption (EBA) is an integrative downstream processing technique for the purification of biological substances directly from unclarified feedstock. In this study, molecular chaperone GroEL, an important protein folding helper both in vivo and in vitro, was purified by the single-step EBA technique from the unclarified homogenate of recombinant E. coli cells. Compared with packed bed adsorption, the EBA technique provided a single-step approach to yield an electrophoretic purity of GroEL. After the homogenate loading and column washing in the expanded bed mode, the GroEL protein was recovered by stepwise salt-gradient elution in packed-bed or expanded-bed modes, respectively. The expanded-bed elution mode was found as efficient as the packed-bed mode in the purification of GroEL from cell disruptate.
Expanded bed adsorption (EBA) is an integrative downstream processing technique for the purification of biological substances directly from unclarified feedstock. In this study, molecular chaperone GroEL, an important protein folding helper both in vivo and in vitro, was purified by the single-step EBA technique from the unclarified homogenate of recombinant E. coli cells. Compared with packed bed adsorption, the EBA technique provided a single-step approach to yield an electrophoretic purity of GroEL. After the homogenate loading and column washing in the expanded bed mode, the GroEL protein was recovered by stepwise salt-gradient elution in packed-bed or expanded-bed modes, respectively. The expanded-bed elution mode was found as efficient as the packed-bed mode in the purification of GroEL from cell disruptate.
基金
Supported by the National Natural Science Foundation of China (No. 20025617).