期刊文献+

双足机器人的滑模控制 被引量:8

Sliding-Mode Control of Biped Robot
下载PDF
导出
摘要 作者利用牛顿 欧拉法建立了12自由度双足机器人的动力学模型,并建立了双足机器人的滑模控制模型·采用比较简单的李亚普诺夫函数对滑模控制的稳定性进行了分析,并利用滑模控制方法对双足机器人的12个关节自由度进行了加速度补偿控制·通过在各关节自由度上加入给定范围的随机误差来代替双足机器人结构参数、转动惯量及摩擦力等因素对各关节自由度运动所造成的误差·仿真实验结果显示双足机器人的各关节自由度的角位移和角速度的误差都比较小,达到了预期的控制效果·仿真实验结果也证实滑模控制方法能够用于12自由度双足机器人的轨迹跟踪控制· Use NewtonEuller method to build a dynamics model of biped robot with 12 degrees of freedom, and further build a slidingmode control model of biped robot. Stability analysis of slidingmode control is made by a simpler Lyapunov function, and the angle acceleration of 12 degrees of freedom is compensated using the slidingmode control method. To prove the effectiveness of sliding mode control method on trajectory tracking control, a simulation experiment was done, where the random errors of some given ranges were added to every joint angle instead of the errors caused by such factors as the structure parameters, moment of inertia, friction, etc. The experiment results show that the trajectory tracking errors of angle and angle velocity at each joint angle are small insomuch that the expected effect comes true and prove that the slidingmode control method is available to control the trajectory tracking of biped robot with 12 degrees of freedom.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2003年第9期892-895,共4页 Journal of Northeastern University(Natural Science)
基金 国家高技术研究发展计划项目(2001AA422270).
关键词 双足机器人 滑模控制 牛顿-欧拉法 仿真 biped robot sliding mode control Newton-Euller method simulation
  • 相关文献

参考文献11

  • 1蔡自兵.机器人学[M].北京:清华大学出版社,2000.106-189.
  • 2Sardain P, Rostami M, Thomas E, et al. Biped robots: correlations between technological design and dynamic behavior [J]. Pergamon Control Engineering Practice,1999,7(4):401-411.
  • 3Sardain P, Rostami M, Bessonnet G. An anthropomorphic biped robot, dynamic concepts and technological design[J].IEEE Transactions on System Man and Cybernetics, 1998,28(6):823-838.
  • 4Kuffner J J Jr. Dynamically-stable motion planning for humanoid robots[J]. Kluwer Autonomous Robots, 2002,12(5):105-118.
  • 5Huang Q, Shuuji, Noriho, et al. A high stability, smooth walking pattern for a biped robot [A].Proceedings of the 1999 IEEE International Conference on Robotics & Automation [C]. Detroit: IEEE Robotics and Automation Society, 1999.65-71.
  • 6Zhao W F, Wu G, Sommer H J. Closed-form kinematics for a spatial closed-chain mechanism modeling biped stance[J]. Pergamon Mech Mach Theory , 1998,33(4) :379-387.
  • 7Fumio, Masayuki, Hiroehika. Action acquisition framework for humanoid robots based on kenematics and dynamics adaptation[A]. Proceedings of the 1999 IEEE International Conference on Robotics & Automation [C]. Detroit: IEEE Robotics and Automation Society, 1999. 1038-1043.
  • 8Furuta T, Tawam T, Okumura Y, et al. Design and construction of a series of compact humanoid robots and development of biped walk control strategies [J]. Elseiver Robotics and Autonomous Systems, 2001,37(3):81-100.
  • 9Park J H, Chung H. Hybrid control for biped robots using impedance control and computed-torque control [A]. Proceedings of the 1999 IEEE International Conference on Robotics & Automation [C]. Detroit: IEEE Robotics and Automation Society, 1999. 1365-1370.
  • 10Rigatos G G, Tzafestas C S, Tazfestas S G. Mobile robot motion control in partially unknown environments using asliding-mode fuzzy-logic controller[J]. Elseiver Robrtics and Autonomous Systems. 2000.33(4):1-11.

同被引文献70

引证文献8

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部