期刊文献+

一个重要函数的Fourier级数

Fourier Progression of an Important Function
下载PDF
导出
摘要 在泛函分析中,存在连续函数,它的Fourier 级数有发散点.本文中的连续函数f(x),它的Fourier 级数虽然处处收敛,但是存在不收敛于函数f(x)的点,并且这样的点至少是处处稠密的. There is function of succession in fanctional analysis,andit's Fourier progression has the points of diverge.This article will tellus that also the Fourier progression of the function of succession convergeseverywhere,there are points which do not coverge on the function itself,and at least these points ase always dense
作者 徐志学
出处 《内蒙古师范大学学报(自然科学汉文版)》 CAS 1992年第2期65-69,共5页 Journal of Inner Mongolia Normal University(Natural Science Edition)
关键词 连续函数 稠密 傅氏级数 发散点 function of succession point of diverge of Fourier progression dense
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部