期刊文献+

一种基于在线学习前向神经网络的组合导航滤波器 被引量:2

Integrated Navigation Filter Based on an Online Learning Feed-Forward Neural Network
下载PDF
导出
摘要 首先建立了带反馈校正的组合导航数学模型 ,在此基础上提出了一种在线学习的神经网络滤波算法。这种算法不需要噪声的先验知识 ,对系统模型的依赖也较弱。仿真表明 ,卡尔曼滤波器在理想情况下有较高的估计精度 ,而神经网络滤波器在非理想情况下有较高的精度 ,对模型误差和噪声特性的变化具有良好的鲁棒性。 A mathematical model of integrated navigation system with feedback control is given, and a filtering algorithm using online learning neural network is proposed. This algorithm has the capability of making estimation without knowledge of noise statistics and depends less on system model than Kalman filtering. Simulational results indicate that the Kalman filter has better accuracy in the ideal condition, while the neural network filtering algorithm has better robustness and accuracy under conditions of model uncertainties and noise characteristic variation.
出处 《数据采集与处理》 CSCD 2003年第3期331-336,共6页 Journal of Data Acquisition and Processing
关键词 组合导航系统 滤波器 在线学习 前向神经网络 数学模型 integrated navigation Kalman filtering neural network online learning robustness
  • 相关文献

参考文献8

  • 1王利存,吴简彤,凌明祥,张树侠.基于神经计算的GPS/SINS组合导航滤波器设计[J].数据采集与处理,1998,13(4):343-347. 被引量:5
  • 2曾连荪.基于人工神经网络的导航数据处理方法研究[J].上海海运学院学报,1999,20(3):23-28. 被引量:5
  • 3以光衢.惯性导航原理[M].北京:航空工业出版社,1987..
  • 4Nneme L N Saad M O′Shea J et al.Neural-esti-mator-based Kalman filter structure[J].J Elect Comp Eng,2000,25(2):59-67.
  • 5以光衙.惯性导航原理[M].北京:航空工业出版社,1987.104-114.
  • 6Nneme L N, Saad M, O'Shea J, et al. Neural-estimator-based Kalman filter structure[J]. J Elect & Comp Eng,2000,25(2) :59-67.
  • 7Ahmed M S, Riyaz S H. Design of dynamic neural observers[J].IEE pro-control Theory Appl, 2000,147 (3) : 257-266.
  • 8Elanayar S, Shin Y C. Radial basis function neural network for approximation and estimation of nonlinear stochastic dynamic system[J]. IEEE Trans on Neural Network,1994,5(4):594-603.

二级参考文献2

共引文献70

同被引文献8

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部