期刊文献+

不等间距采样数据控制系统的性能 被引量:1

下载PDF
导出
摘要 探讨了系统在不等间距采样方式下的一些主要特性,证明了线性时变连续系统在不等间距采样方式下离散化时,其能控性和能观性不变,并将该结论推广到周期性系统和时变采样方式,同时分析了不等间距采样条件下线性和非线性数字控制系统的稳定性,提出并证明了这两种系统在线性数字反馈控制作用下的稳定性条件,并进而将该稳定性结论推广到任意时变采样方式和由非线性连续被控对象和非线性数字控制器构成的一般非线性系统。
作者 郭戈
出处 《自然科学进展》 北大核心 2003年第9期977-982,共6页
基金 国家自然科学基金(批准号:50274003) 国家科技攻关(批准号:2002BA901A28) 甘肃省省长基金(批准号:GS15-A52-012)
  • 相关文献

参考文献11

  • 1Chen T W, et al. Reconstruction of continuous-time systems from their discretization. IEEE Automatic Control, 2000, 45 ( 10 ) :1914.
  • 2Middleton R, et al. Non-pathological sampling for generalized sampied-data hold functions. Automatica, 1995, 31(2) : 315.
  • 3Franklin G F, et al. Digital Control of Dynamic Systems (Third Edition). Beijing: Tsinghua University Press, 2001.
  • 4Francis B A, et al. Stability theory for linear time-invariant plant swith periodic digital controllers. IEEE Transactions on Automatic Control, 1988, 33(4): 820.
  • 5Hou L, et al. Some qualitative properties of multirate digital controlsystems. IEEE Automatie Control, 1997, 44(4) : 765.
  • 6Chew K K, et al. Digital control of repetitive errors in disk drive systems. IEEE Control Systems Magazine. 1998. 10(1): 16.
  • 7Hou L, et al. Some qualitative properties of sampled-data control systems. IEEE Transaetions on Automatie Control, 1997, 42(12) :1721.
  • 8Kreisselmeier G. On sampling without loss of observability/controllability. IEEE Transactions on Automatic Control, 1999, 44 (5) :1021.
  • 9Bittanti S, et al. H-controllability and observability of linear periodic systems. SIAM Journal Control Optimization, 1984, 22(6) : 889.
  • 10Dahleh, M A, et al. Optimal and robust controllers for periodic and multirate systems. IEEE Automatic Control, 1992, 37(1) : 90.

同被引文献31

  • 1孙振东,夏小华,高为炳.多重(A,B)-不变子空间及多频采样控制[J].自动化学报,1995,21(3):326-332. 被引量:1
  • 2KRANC G M. Compensation of an error-sampled system by a multi-rate controller [J]. Trans AIEE, 1957(6) : 149-155.
  • 3MEYER D G. New class of shift-varyhng operators,their shlft-invariant equivalents, and multimte digital systems [J]. IEEE Trans on Automat Contr, 1990,35(4) :429-433.
  • 4KALMAN R E, BERTRAM J E. A unified approach to the theory of sampling systems [J]. J Franklin Ins, 1959(267):405-436.
  • 5ARAKI M, YAMAMOTO K. Muhivariable multirate sampleddata systems: state-space description, transfer characteristics and Nyquist criterion [J ]. IEEE Trans on Automat Contr,1986,31(2) : 145-154.
  • 6BARRY P E. Optimal control of multirate systems[R]. New York: Research Department, Grumman Aerospace Corporation,1975.
  • 7AMIT N. Optimal control of multirate digital control system[R]. Standford: Standford University, 1980.
  • 8QIU L,TANK K. Direct state space ,solution of muitirate sampied-data H2 optimal control[J]. Automatica, 1998, 34 ( 11 ):1 431-1 437.
  • 9CHEN T, QIU L H∞ design of general multi-rate sampled-data system [J]. Automatica,1994,30(7): 1 139-1 152.
  • 10SAEK R, MURRY J. Fraction representation, algebraic geometry and simultaneous stabilization problem [J]. IEEE Trans on Automat Contr, 1982,27 (3) : 895-903.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部