期刊文献+

基于经验模态分解的滚动轴承早期故障预警研究 被引量:2

下载PDF
导出
摘要 滚动轴承是旋转机械中最常用的零部件之一。针对滚动轴承早期故障预警较差的问题,提出了一种基于经验模态分解(Empirical Mode Decomposition,简称EMD)的滚动轴承早期故障预警方法。该方法首先对轴承原始信号进行经验模态分解,得到一阶固有模态函数(Intrinsic Mode Function,简称IMF),然后对一阶IMF分量进行分析,提取反映轴承故障发展的特征指标。再采用局部均值法对特征指标进行处理,将特征局部均值与阈值比较,实现对滚动轴承早期故障的预警。最后利用滚动轴承试验数据对该方法进行了验证,结果表明,基于经验模态分解的滚动轴承早期故障预警方法能够有效地识别和预警滚动轴承早期故障。
出处 《设备管理与维修》 2016年第S2期31-34,共4页 Plant Maintenance Engineering
  • 相关文献

参考文献4

二级参考文献21

  • 1张举,王兴国,李志雷.小波包能量熵神经网络在电力系统故障诊断中的应用[J].电网技术,2006,30(5):72-75. 被引量:35
  • 2陈刚,廖明夫.基于小波分析的滚动轴承故障诊断研究[J].科学技术与工程,2007,7(12):2810-2814. 被引量:14
  • 3JACK L B, NANDI A K, MCCORMICK A C. Diagnosis of Rolling Element Bearing Faults Using Radial Basis Function Networks[J]. Applied Signal Processing, 1999.6:25 - 32.
  • 4HUANG N E, et al. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis[M].Proc R Soc Lond.A, 1998.
  • 5Paya B A, Esat I I .Artificaial Neural Network Based Fault Diagnostics of Rotating Machinery Using Wavelet Transforms sa a Preprocessor .Mechanical Systems and Signal Processing 1997 .11(5):751-765.
  • 6Huang N E, et al .The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlimear and Non-Stationary Time Series Analysis .Proc .R .Soc.Lond. A,1998,454:903-995.
  • 7Jardine Andrew K S, Lin Darning, Banjevic Dragan. A review on ma- chinery diagnostics and prognostics implementing condition-based ma- intenance. Mechanical Systems and Signal Processing, 2006; 20 (7) : 1480-1510.
  • 8Kankar P K , Satish C S, Harsha S P. Fault diagnosis of ball bear- ings using machine learning methods. Expert Systems with Applica- tions, 2011 ;38:1876-1886.
  • 9Tandon N, Choudhury A, An analytical model for the prediction of the vibration response of rolling element bearings due to a localized defect. Journal of Sound and Vibration, 1997; 205 (3) : 275-292.
  • 10Heskes T. Self-organizingmaps, vector quantization, andmixture- modeling. IEEE Transactions on Neural Networks, 2001;12: 1299-1305.

共引文献179

同被引文献61

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部