期刊文献+

人工神经网络的直线图素识别质量判别器

Using Neural Network to Verify Recognition Quality of A Line
下载PDF
导出
摘要 讨论矢量化直线图素识别质量的判别方法 ,采用BP网络 ,网络输入为反映直线图素识别质量的特征因子 ,网络输出为从斜率、线宽及直线端点的定位精确性等方面对直线图素识别质量的评价 ,BP网络经训练成为直线图素质量判别器 由于输入到网络中的各特征因子均是与线宽的相对比值 ,因此 ,该方法对扫描分辨率的影响不敏感 。 The evaluation process can be divided into two parts: the first part is to extract factors reflecting the quality of a line, such as slope, width, location of end points; the second part is to put these factors into an evaluator for analyzing. A BP neural network with a hidden layer was used. After training the BP network became a quality evaluator for lines and output the evaluated results on slope, width and end point's location of a line. This approach is not sensitive to scanning resolution and easy to detect poor quality lines. The method can be readily extended to verify other types of graphic elements.
作者 李蓉 张树生
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2003年第9期1060-1064,共5页 Journal of Computer-Aided Design & Computer Graphics
关键词 直线图素识别质量判别器 人工神经网络 矢量化算法 约束模板 图素识别 scanned engineering drawing neural network vectorization evaluation
  • 相关文献

参考文献5

  • 1胡友兰,常明.工程图纸智能识别的分层理解模型[J].计算机工程,1998,24(12):50-52. 被引量:7
  • 2谭柏珠,叶邦彦,陈澄洲.基于知识的窗口矢量化技术[J].计算机辅助设计与图形学学报,2000,12(2):105-109. 被引量:3
  • 3Ojier J, Mullot R, Labich J, et al. An image interpretation device can not be reliable without any semantic coherency analysis of the interpretated objects: Application to Frenchcadastral maps [A]. In: Proceedings of the 4th International Conference on Document Analysis and Recognition, Ulm,Germany, 1997. 532--535.
  • 4Markus Roosli, et al. A high quality veetorization combining local quality measures and global constraints [A]. In:Proceedings of the 3rd International Conference on Document Analysis and Recognition, Montreal, 1995. 243--248.
  • 5Liu Wenyin, et al. Incremental arc segmentation algorithm and its evaluation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20 4 : 424--431.

二级参考文献2

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部