期刊文献+

基于半监督学习算法的虚假评论识别研究 被引量:15

Deceptive Reviews Detection Based on Semi-supervised Learning Algorithm
下载PDF
导出
摘要 已有的虚假评论识别方法主要采用启发式策略或简单特征建模。针对这些方法的不足,提出使用机器学习方法识别虚假评论。首先整合计算语言学与心理语言学的知识对评论文本进行建模,使用全监督学习算法来评价不同特征建模的性能,选出最好的特征组合。为了提高识别性能,设计2种半监督学习算法充分利用大量的未标注文本。实验结果证实所提算法超过当前的基准。 Machine learning methods were presented to identify deceptive reviews. With the integration of knowledge from computational linguistics and psycholinguistics,supervised method was developed to evaluate the performance of different feature modelings,and select the best mixed features. Then,two semi-supervised learning methods were designed to exploit the large amount of unlabeled data. The results showed the proposed methods outperform the current baselines.
出处 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2014年第3期62-69,共8页 Journal of Sichuan University (Engineering Science Edition)
基金 国家自然科学基金重点项目(61133012) 国家自然科学基金资助项目(61173062) 中央高校基本科研业务费专项资金资助项目(2012211020210)
关键词 机器学习 半监督学习 计算语言学 虚假评论 machine learning semi-supervised learning computational linguistics deceptive reviews
  • 相关文献

参考文献3

  • 1Fang Wu,Bernardo A. Huberman.Opinion formation under costly expression[J].ACM Transactions on Intelligent Systems and Technology (TIST).2010(1)
  • 2Jeffrey T. Hancock,Lauren E. Curry,Saurabh Goorha,Michael Woodworth.On Lying and Being Lied To: A Linguistic Analysis of Deception in Computer-Mediated Communication[J].Discourse Processes.2008(1)
  • 3Aldert Vrij,Samantha Mann,Susanne Kristen,Ronald P. Fisher.Cues to Deception and Ability to Detect Lies as a Function of Police Interview Styles[J].Law and Human Behavior.2007(5)

同被引文献138

  • 1周强.汉语句法树库标注体系[J].中文信息学报,2004,18(4):1-8. 被引量:90
  • 2涂鼎,陈岭,陈根才,吴勇,王敬昌.基于多路层次聚类的商品评论数据概念分类构建[J].计算机研究与发展,2013,50(S2):208-215. 被引量:3
  • 3Muller K R, Mika S, Ratsch G,et al. An introduction to kernel based learning algorithms [ J ]. IEEE Transactions on Neural Networks ,2001,12(2) : 181 - 201.
  • 4Bach F R, Lanckriet G R G, Jordan M I. Multiple kernel learning, conic duality, and the SMO algorithm [ C ]//Pro- ceedings of the 21st International Conference on Machine Learning. New York : ACM ,2004:41 - 48.
  • 5Klofl M, Brefeld U, Laskov P, et al. Non-sparse multiple kernel learning [ C ]//Proceedings of the NIPS Workshop on Kernel Learning: Automatic Selection of Kernels. Van- couver : MIT Press ,2008 : 1 - 4.
  • 6Rakotomamonjy A,Bach F,Canu S,et al. SimpleMKL[ J]. Journal of Machine Learning Research,2008,9(ll):2491 - 2521.
  • 7Kloft M,Blanchard G. On the convergence rate of/p-norm multiple kernel learning[J]. Journal of Machine Learning Research,2012,13 ( 8 ) :2465 - 2501.
  • 8Vapnik V N. The natural of statistical learning theory [ M ]. New York : Springer, 1995.
  • 9Vapnik V N. Statistical learning theory [ M ]. New York: Wiley, 1998.
  • 10Demir B, Bruzzone L. A multiple criteria active learning method for support vector regression[J]. Pattern Recogni- tion,2014,47 (7) :2558 - 2567.

引证文献15

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部