期刊文献+

微分代数系统中分块快速指标约简的启发式算法 被引量:2

A Heuristic Algorithm for Block Fast Index Reduction in Differential Algebraic Systems
下载PDF
导出
摘要 为了高效地优化多领域统一建模仿真软件中稀疏微分代数方程的指标约简技术,提出了一种分块快速指标约简的启发式算法。它的主要思想是将微分代数方程的符号矩阵进行块状上三角化,然后沿每一独立块状上三角化的子符号矩阵对角线方向,由上往下依次对其每一对角子方阵运用含参数Pryce方法进行指标约简。大量数值实验结果表明,分块快速指标约简方法可以求出微分代数方程的最优偏移向量,其效率明显优于Pryce方法的效率,效率提高倍数与对角子方阵块数成正相关。进一步以数控冲床为例,对其微分代数方程采用分块快速指标约简算法进行指标约简,验证了该方法高效地解决了较大规模高指标微分代数方程的指标约简问题,便捷地获得了该系统的最优偏移向量等结构信息。 In order to optimize the index reduction technology of sparse differential algebraic equations(DAEs) from multi-domain unified modeling software,a heuristic algorithm for block fast index reduction method(BFIRM) was proposed.The main principle of BFIRM is to do block triangularization of DAEs' signature matrix,then to use Pryce method with parameters to process diagonal subsquare-matrix in block triangulated signature matrix from top to bottom in sequence.A large number of numerical experiment results showed that BFIRM can solve the canonical offsets vectors of sparse DAEs efficiently.And the reduction efficiency positively correlates with the number of the diagonal blocks.Moreover,to take CNC punch machine tool as an example,its DAEs was reduced by the BFIRM.This method was verified effectively in reducing the index of large-scale DAEs with high index and easily got DAEs' structural information,such as canonical offsets vectors.
出处 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2014年第4期67-74,共8页 Journal of Sichuan University (Engineering Science Edition)
基金 国家"973"计划资助项目(2011CB302402) 国家自然科学基金重大研究计划项目(91118001) 重庆市科技攻关计划项目(cstc2012ggB40004)
关键词 多领域统一建模 微分代数方程 指标约简 Pryce方法 分块快速指标约简方法 数控冲床 multi-domain unified modeling differential algebraic equations index reduction Pryce method block fast index reduction method CNC punching machine tool
  • 相关文献

参考文献3

二级参考文献14

  • 1丁建完,陈立平,周凡利.复杂陈述式仿真模型的指标分析[J].系统仿真学报,2006,18(8):2092-2096. 被引量:7
  • 2Fritzson P.Principles of object-oriented modeling and simulation with Modelica 2.1 [M].New York:IEEE Press,2003.
  • 3Modelica Association.Modelica language specification[M].Version 3.0. http://www.modelica.org/documents/ModelicaSpec30. pdf, 2007.
  • 4Tiller M Michael.Introduction to physical modeling with Modelica[M].Kluwer Academic Publisher, 2002.
  • 5Peter Fritzson, Peter Aronsson. The open modelica modeling, simulation, and development environment [C]. Proceedings of the 46^st Conference on Simulation and Modeling of the Scandinavian Simulation Society, 2005.
  • 6Gunther Zauner, Daniel Leimer. Modeling structural-dynamics system in Modelica/Dymola, Modelica/Mosilab, and any logic [C].Proceedings of the 1^st International Workshop on Equation- Based Object-Oriented Languages and Tools, 2007.
  • 7Peter Fritzson. Modelica meta-programming and symbolic transformations[M], http://www.ida.liu.se/labs/pelab/modelica/, 2007.
  • 8Thomas H Cormen,Charles E Leiserson,Ronald L Rivest,et al. Introduction to algorithms [M]. 3rd ed. The MIT Press, 2009: 664-669.
  • 9Mizuyo Takamatsu, Satoru Iwata. Index reduction for differential-algebraic equations by substitution method[J].Linear Algebra and its Applications,2008,429(8-9):2268-2277.
  • 10Fritzson P, Bunus P. Modelica-a general object oriented language for continuous and discrete event system modeling and simulation [C]//Proceedings of the 35th Annual Simulation Symposium. San Diego, 2002:365-380

共引文献2

同被引文献3

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部