期刊文献+

一种改进的3维块匹配视频去噪算法 被引量:3

An Improved Video Denoising Algorithm Based on 3D Block Matching
下载PDF
导出
摘要 针对Video Block-Matching and 3-D Filtering(VBM3D)算法耗时高且去噪视频存在块效应的问题进行了改进。在对变换域系数进行收缩时,采用连续阶导数阈值法,代替原算法中的硬阈值法,减少块效应;在帧内匹配时,采用基于积分图思想的图像块距离计算加速方法;在帧间匹配时,使用帧间预测性匹配方法,减少计算量,提高算法效率。理论分析和实验结果表明,改进后的算法不仅能有效改善原VBM3D算法中的块效应,且算法复杂度大大降低。 The video block-matching and 3-D filtering(VBM3D) algorithm was improved,which had block effect and low-efficiency.A continuous derivative threshold method was introduced during the shrinkage of the coefficient in transform domain,replacing the hard threshold method.A fast method based on the integral images was used to calculate the distance between image blocks in intra frames matching.An improved searching method of predictive-search block-matching for inter frames matching was presented.The computation was reduced and the efficiency of the algorithm was improved on the premise of finding similar blocks.The experimental results and the theoretical analysis demonstrated that the improved method achieved excellent denoising performance.The result of block effect in the original VBM3 D algorithm was improved and the computation complexity of improved algorithm was reduced greatly.
出处 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2014年第4期81-86,共6页 Journal of Sichuan University (Engineering Science Edition)
基金 国家自然科学基金资助项目(91120002 61201442)
关键词 视频去噪 VBM3D 3维变换 连续阶导数阈值 块匹配 video denoising VBM3D three-dimensional transform continuous derivative threshold block-matching
  • 相关文献

参考文献3

二级参考文献30

  • 1何坤,周激流,刘昶,刘然.基于局部保边函数的低信噪比图像去噪[J].四川大学学报(工程科学版),2009,41(2):179-184. 被引量:5
  • 2李永刚,石美红,魏远旺.基于PCNN的高斯噪声滤波[J].计算机工程与应用,2007,43(1):65-67. 被引量:18
  • 3石美红,毛江辉,梁颖,龙世忠.一种强高斯噪声的图像滤波方法[J].计算机应用,2007,27(7):1637-1640. 被引量:19
  • 4Luo H, Zhu L, Ding H. Coupled anisotropic diffusion for image selective smoothing [ J ]. Signal Processing, 2006, 86 (7) :1728 - 1736.
  • 5Irene Gijbels, Alexandre Lambert, Peihua Qiu. Edge-preserving image denoising and estimation of discontinuous surfaces [ C ]//IEEE Transeations on Pattern Analysis and Machine Intelligence. 2006,28 (7) : 1075 - 1087.
  • 6Mahmoudi M and Sapiro G. Fast image and video denoising via nonlocal means of similar neighborhoods [J]. IEEE, Signal Processing Letters, 2005, 12(12): 839-842.
  • 7Zlokolica V and Philips W. Motion and detail adaptive denoising of video [C]. IS&T/SPIE 16th Annual Symposium on Electronic Imaging, San Jose, USA, January, 2004: 403-412.
  • 8Chan Tai-wai, Au O C, and Chong Tak-song, et al.. A novel content-adaptive video denoising filter [C]. Acoustics, Speech, and Signal Processing, Philadelphia, USA, March 18-23, 2005 649-652.
  • 9Amer A and Dubois E. Fast and reliable structure-oriented video noise estimation [J]. IEEE Trans. on Circuits and Systems.for Video Technology, 2005, 15(1): 113-118.
  • 10Ghazal M, Amer A, and Ghrayeb A. Homogeneity-based directional sigma filtering of video noise [C]. IEEE International Conference on Image Processing, Genova, Italy, Sept 11-14, 2005: 97-100.

共引文献15

同被引文献26

  • 1戴声奎,喻莉,朱光喜,刘文予.基于视频时空相关性的帧内预测模式抉择[J].通信学报,2005,26(11):43-48. 被引量:4
  • 2DONOHO D L, IAIN M J. Ideal spatial adaptation by wavelet shrink- age[J]. Biometrika, 1994, 81(3): 425-455.
  • 3DONOHO D L. De-noising by soft- thresholding[J]. IEEE Trans on Information Theory, 1995, 41(3): 613- 627.
  • 4PIZURICA A, PHILIPS W, LEMAHIEU I, et al. A joint interand intrascale statistical model for Bayesian wavelet based image denois- ing[J]. IEEE Tram on Image Process, 2002, 11(5): 545-557.
  • 5SELESNICK I W, LI K Y. Video denoising using 2D and 3D dual-tree complex wavelet transforms[A]. In Wavelet Applications in Signal and Image Processing X (Proc SPIE 5207) [C]. San Diego, 2003.4-8.
  • 6VARGHESE C~ ZHOU W. Video danoising using a spatiotemporal statistical model of wavelet coefficients[A]. IEEE International Con- ference on Acoustics, Speech and Signal Prncessing[C]. Las Vegas, 2008.1257-1260.
  • 7KOSTADIN D, ALESSANDRO F, KAREN E. Video danoising by sparse 3D transform-domain collaborative filtering[A]. European Sig- nal Processing Conference[C]. Tampere, Finland, 2007.145 -149.
  • 8Yl H, LIU C Q, SI-IEN Z W, et al. Robust video denoising using low rank matrix completion[A]. IEEE Conference on Computer Vision andPattern Recognition (CVPR)[C]. San Francisco, CA,2010. 1791-1798.
  • 9CAMILLE S, CHARLES A D. Adaptive regularization of the nl-means application to image and video denoising[J]. IEEE Transac- tions on Image Processing, 2014,23(8): 3506 -3520.
  • 10KUANG Y, ZHANG L. An adaptive rank-sparsity K-SVD algorithm for image sequence denoising[J]. Pattern Recognition Letters, 2014, 45(11): 46-54.

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部