期刊文献+

基于CEGI和Fourier变换的全自动点云配准算法 被引量:2

Fully Automatic Point Cloud Registration Algorithm Based on CEGI and Fourier Transformation
下载PDF
导出
摘要 针对没有任何几何和拓扑信息的散乱点云,提出一种全自动点云数据配准算法。针对待配准的2组点云数据,首先通过局部最小二乘曲面拟合,估计每个点的法向和曲率,其次计算点云的扩展高斯图(EGI)和复扩展高斯图(CEGI),然后根据EGI和CEGI利用球面调和函数计算旋转欧拉角,构造相关函数,通过Fourier变换估计平移向量,完成粗配准,把粗配准结果作为新的初始位置,采用最近点迭代算法(ICP)进行精确配准,从而实现2组散乱点云的精确配准。实例分析表明该算法配准速度较快,效果良好。 A fully automatic point cloud data registration algorithm was proposed to disorderly point cloud with no additional information other than coordinates of measured points. In the algorithm,the normal vector and curvature were first estimated according to its neighbor points and Least-Squares approximation. Secondly,the EGI and CEGI were calculated. Then,the calculation of Euler angles of rotation through spherical harmonic functions and the translation according to Fourier transform were completed. With the initialization of the former results,the iterative closest point algorithm leads to perfect registration. Experimental results indicated that this kind of registration algorithm has a better effect.
作者 黄戈 李晓峰
出处 《四川大学学报(工程科学版)》 EI CSCD 北大核心 2014年第5期104-109,共6页 Journal of Sichuan University (Engineering Science Edition)
基金 国家高技术研究发展计划资助项目(2012AA011804 2013AA013802) 国家重大科学仪器设备开发专项资助项目(2013YQ49087905) 四川大学青年教师科研启动基金资助项目(2011SCU11013)
关键词 散乱点云数据 法向 曲率 EGI 3维旋转群 FOURIER变换 disorderly point cloud data normal vector curvature EGI 3D rotation groups Fourier transform
  • 相关文献

参考文献3

二级参考文献15

  • 1杨文宇,刘健,余健明,宋蒙.基于改进prim算法的配电网络优化规划方法[J].电工技术学报,2005,20(3):75-79. 被引量:23
  • 2柯映林,王青.反求工程中的点云切片算法研究[J].计算机辅助设计与图形学学报,2005,17(8):1798-1802. 被引量:44
  • 3张典华,蔡勇,龙伟.散乱数据点集的三角划分算法研究[J].计算机工程与设计,2005,26(8):2048-2050. 被引量:3
  • 4孙殿柱,范志先,李延瑞,孙肖霞.散乱数据点云型面特征分析算法的研究与应用[J].机械工程学报,2007,43(6):133-136. 被引量:31
  • 5Liu G H, Wong Y S,Zhang Y F, et al. Error-based segmentation of cloud data for direct rapid prototyping [J]. Computer-Aided Design,2003,35 (7) : 633 - 645.
  • 6Liu G H. Segmentation of cloud data for rapid prototyping [ D ]. National University of Singapore,2001.
  • 7Wu Y F, Wong Y S, Loh H T, et al. Modelling cloud data using an adaptive slicing approach [ J ]. Computer-Aided Design,2004,36 (1) :231-240.
  • 8Norbert B,Bralf H P S. The R^*-tree:An efficient and robust access method for points and rectangles [ C ]//ACM SIGMOD. Boston, 1990,322 - 331.
  • 9Qing Zhu, Jun Gong, Yeting Zhang. An efficient 3D R-tree spatial index method for virtual geographic environments [ J ]. ISPRS Journal of Photogrammertry and Remote Sensing,2007,62 (3) :217 - 224.
  • 10Brakatsoulas S, Pfoser D, Theodoridis Y. Revisiting R-tree Construction Principles[ C]//ADBIS. Bratislava, Slovakia, 2002 : 149 - 162.

共引文献4

同被引文献18

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部