期刊文献+

基于双谱分析的磁瓦内部缺陷音频检测方法 被引量:9

Acoustic Inspection of Internal Defect in Magnetic Tile Based on Bispectrum Analysis
下载PDF
导出
摘要 针对目前磁瓦内部缺陷采用人工音频识别存在的问题,使用双谱分析已知内部缺陷情况的磁瓦在跌落撞击试验中产生的音频信号,其结果表明内部缺陷会影响双谱的峰值分布。根据这个规律,提出一种归一化双谱3切片分析方法用于磁瓦内部缺陷的检测。该方法首先提取归一化双谱上3个特定方向的切片;其次按照峰值分布与内部缺陷的映射关系,将每个切片划分成若干频率区域,并对各区域进行分类;然后通过对不同种类的区域最大峰值比较与计算,建立识别内部缺陷的阈值。最后,验证试验对方法的有效性进行了评估,取得了97%以上的识别正确率。试验结果表明,双谱分析在磁瓦内部缺陷音频检测中具有较好的实用性。 Internal defect detection plays a key role in quality assurance of magnetic tile. In order to solve the issue of internal defect identification of magnetic tile using human auditory,bispectrum was used to analyze the acoustic signal generated in a drop impact test of magnetic tile whose internal defect was known. The analysis indicated that internal defect can affect peak distribution of bispectrum. In accordance with this rule,a method based on three-slice analysis of normalized bispectrum was presented for internal defect detection of magnetic tile. With this method,firstly,the three slices were extracted along the specific directions of normalized bispectrum. Secondly,each slice was divided into several frequency regions and all regions were classified,according to the mapping between peak distribution and internal defect. Thirdly,by comparing and calculating the maximum peak of the dissimilar regions,the threshold value was established to distinguish internal defect. The effectiveness of this method was assessed by a verification test at last. The test result showed that the identification accuracy achieved over 97%,which demonstrated that the bispectrum analysis could be applied to the acoustic inspection for internal defect of magnetic tile.
出处 《四川大学学报(工程科学版)》 EI CSCD 北大核心 2014年第5期188-194,共7页 Journal of Sichuan University (Engineering Science Edition)
基金 国家自然科学青年基金资助项目(51205265) 四川省科技支撑计划资助项目(2011GZ0280)
关键词 双谱 音频检测 磁瓦 内部缺陷 bispectrum acoustic inspection magnetic tile internal defect
  • 相关文献

参考文献11

  • 1蒋红海,殷国富,刘培勇,尹湘云.基于Curvelet变换和支持向量机的磁瓦表面缺陷识别方法[J].四川大学学报(工程科学版),2012,44(3):147-152. 被引量:13
  • 2W. Y. Liu,J. G. Han.A fuzzy clustering-based binary threshold bispectrum estimation approach[J].Neural Computing and Applications.2012(1)
  • 3Eugenio C. Orosco,Natalia M. Lopez,Fernando di Sciascio.Bispectrum-based features classification for myoelectric control[J].Biomedical Signal Processing and Control.2012
  • 4Y. Zhou,J. Chen,G.M. Dong,W.B. Xiao,Z.Y. Wang.Application of the horizontal slice of cyclic bispectrum in rolling element bearings diagnosis[J].Mechanical Systems and Signal Processing.2011
  • 5F. Gu,Y. Shao,N. Hu,A. Naid,A.D. Ball.Electrical motor current signal analysis using a modified bispectrum for fault diagnosis of downstream mechanical equipment[J].Mechanical Systems and Signal Processing.2010(1)
  • 6Kuang Chua Chua,Vinod Chandran,U. Rajendra Acharya,Choo Min Lim.Application of higher order statistics/spectra in biomedical signals—A review[J].Medical Engineering and Physics.2010(7)
  • 7Juggrapong Treetrong,Jyoti K. Sinha,Fengshu Gu,Andrew Ball.Bispectrum of stator phase current for fault detection of induction motor[J].ISA Transactions.2009(3)
  • 8Z.D. Jiang,B.L. Luk,K.P. Liu.Bispectra-based impact acoustic non-destructive evaluation[J].NDT and E International.2009(7)
  • 9Fidel Ernesto Hernández Montero,Oscar Caveda Medina.The application of bispectrum on diagnosis of rolling element bearings: A theoretical approach[J].Mechanical Systems and Signal Processing.2007(3)
  • 10Yang Xiang,S.K Tso.Detection and classification of flaws in concrete structure using bispectra and neural networks[J].NDT and E International.2001(1)

二级参考文献14

  • 1Tsneg Y H,Tsai D M. Defect detection of uneven brightness in low-contrast images using basis image representation[ J]. Pattern Recognition 2010,43 ( 3 ) : 1129 - 1141.
  • 2Nencini F, Garzelli A, Baronti S, et al. Remote sensing im- age fusion using the curvelet transform [ J ]. Information Fu- sion ,2007,8 ( 2 ) : 143 - 156.
  • 3Starck J L, Murtagh F, Candes E J,et al. Gray and color im- age contrast enhancement by the curvelet transform [ J ]. IEEE Transactions on Image Processing, 2003,12 (6) : 706 -717.
  • 4Starck J L, Candes E J, Donoho D L. The Curvelet Transform for Image Denoising [ J ]. IEEE Transaction on Image Proeessing,2002,11 (6) :670 - 684.
  • 5Feng Kun, Jiang Zhinong, He Wei, et al. A recognition and novelty detection approach based on curvelet transform, non- linear PCA and SVM with application to indicator diagram diagnosis [ J ]. Expert Systems with Applications, 2011,38 (10) : 12721 - 12729.
  • 6Candes E J, Donoho D L. Curvelets--a surprisingly effective non-adaptive representation for objects with edges [ R]. Nashville : Vanderbilt University Press, 1999.
  • 7Candes E J, Donoho D L. New tight frames of curvelets and optimal representations of objects with piecewise C2 singular- ities [ J ]. Commnications Pure Applied Mathematics, 2004, 57(2) :219 -266.
  • 8Candes E J. , Donoho D L. Continuous Curvelet transform: I. Resolution of the wavefront set [ J ]. Applied and Compu- tation Harmonic Analysis, 2005,19 ( 2 ) : 162 - 197.
  • 9Candes E J.,Donoho D L. Continuous Curvelet Transform: II. Discretization into frames [ J ]. Applied and Computation Harmonic Analysis, 2005,19 (2) : 198 - 222.
  • 10Candes E J, Demanet L, Donoho D L. Fast discrete Curvelet transforms [ J 1. Muhiscale Model Simul, 2006,5 ( 3 ) : 861 - 899.

共引文献12

同被引文献58

引证文献9

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部