期刊文献+

基于多尺度分析及图论归一化割的矿岩颗粒图像分割及应用 被引量:8

Rock Particle Image Segmentation on Multi-scale and Normalized Cut
下载PDF
导出
摘要 为克服矿岩颗粒图像分割中的欠分割和过分割现象,基于矿岩颗粒图像的特性,提出一种结合多尺度分析与图论的矿岩颗粒图象分割算法。该算法首先利用图像多尺度变换缩小图像,以去噪和减少数据量,再利用改进的图论归一化割(Normalized Cut)算法来分割矿岩颗粒图像。对多种类型的矿岩颗粒图像进行了分割实验,并与阈值、分水岭、聚类分析及FCM等常用的分割方法进行比较。实验结果证明,研究的算法对岩石颗粒图像具有优于其它分割算法的效果,新算法应用到了大型露天矿爆堆中的岩石块度测量与分析,效果令人满意。 Because of the complex structure of the rock images,using the general image processing methods to segment the ore-bearing rock particle images may cause uneven,owe segmentation and over segmentation phenomenon.In order to improve the accuracy of rock image segmentation,a kind of ore image segmentation algorithm was proposed based on graph theory.In this algorithm,the first step was to reduce images by multi-scale analysis,then,the ore image was segmented by using Normalized Cut.Various categories of orebearing rocks were segmented by NCut and the segmentation images were compared with the segmentation results of traditional image processing methods such as threshold,watershed and clustering analysis,FCM and other processing methods in the experiment.The result of the experiment showed that for some specific rocks,the new algorithm is better than the traditional ones.
出处 《四川大学学报(工程科学版)》 CSCD 北大核心 2015年第S1期118-124,共7页 Journal of Sichuan University (Engineering Science Edition)
基金 国家自然科学基金资助项目(61170147)
关键词 矿岩颗粒图像 图论 归一化割 图像分割 rock particles graph theory Normalized Cut image segmentation
  • 相关文献

参考文献14

  • 1Lingfeng Wang,Chunhong Pan.Robust level set image segmentation via a local correntropy-based K-means clustering[J]. Pattern Recognition . 2013
  • 2I. S. Gruzman.Threshold binarization of images based on the skewness and kurtosis of truncated distributions[J]. Optoelectronics, Instrumentation and Data Processing . 2013 (3)
  • 3Heiko Andr?,Nicolas Combaret,Jack Dvorkin,Erik Glatt,Junehee Han,Matthias Kabel,Youngseuk Keehm,Fabian Krzikalla,Minhui Lee,Claudio Madonna,Mike Marsh,Tapan Mukerji,Erik H. Saenger,Ratnanabha Sain,Nishank Saxena,Sarah Ricker,Andreas Wiegmann,Xin Zhan.Digital rock physics benchmarks—Part I: Imaging and segmentation[J]. Computers and Geosciences . 2013
  • 4Rachel Cassidy,Philip J. Morrow,John McCloskey.A machine vision system for quantifying velocity fields in complex rock models[J]. Machine Vision and Applications . 2006 (6)
  • 5Pedro F. Felzenszwalb,Daniel P. Huttenlocher.Efficient Graph-Based Image Segmentation[J]. International Journal of Computer Vision . 2004 (2)
  • 6Weixing Wang.Image analysis of aggregates[J]. Computers and Geosciences . 1999 (1)
  • 7W.X. WANG.BINARY IMAGE SEGMENTATION OF AGGREGATES BASED ON POLYGONAL APPROXIMATION AND CLASSIFICATION OF CONCAVITIES[J]. Pattern Recognition . 1998 (10)
  • 8Grady,Leo.Random walks for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2006
  • 9Grady, Leo,Schwartz, Eric L.Isoperimetric partitioning: A new Algorithm for graph partitioning. SIAM Journal on Scientific Computing . 2006
  • 10Wang, Song,Siskind, Jeffrey Mark.Image segmentation with ratio cut. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2003

共引文献7

同被引文献62

引证文献8

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部