期刊文献+

基于同伦算法的时变流信号动态压缩感知研究 被引量:2

Study on Dynamic Compressed Sensing Based on the Homotopy Algorithm to Process Streaming Signals
下载PDF
导出
摘要 为解决传统压缩感知在处理时变流信号时易引发的效率低、块效应、延迟高等问题,提出了基于L1同伦恢复算法的时变同伦算法。该算法通过对重叠的信号时间采集窗口的滑动控制,压缩采样当下窗口中的待测数据,并用L1同伦恢复算法实时恢复出原信号。仿真表明,以医学领域的心电信号为例,该算法能够快速实时地压缩采样并精确重构时变心电信号,其重构信号的相对误差控制在10-2范围内,充分证明了算法的实践可行性,从而能有效地解决存储庞大动态心电图数据的难题。 Currently most of the compressed sensing to date has focused on static finite-dimension signals.The real-time homotopy algorithm based on the L1-homotopy recovery algorithm was proposed.The method iteratively processed measurements over a sliding overlapping window and chosed the L1-homotopy recovery algorithm that could avoid solving a new L1 program from scratch at the next iteration to solve a weighted L1-norm problem for estimating sparse coefficients.Experiment results on very long real-time electrocardiosignals in the field of medicine demonstrated the good performance of the algorithm in real-time system,with the relative error of the reconstructed signal controlled within 10-2,which effectively lessened great storage burden the ambulatory electrocardiograph(ECG) had brought about.
出处 《四川大学学报(工程科学版)》 CSCD 北大核心 2015年第S1期136-141,共6页 Journal of Sichuan University (Engineering Science Edition)
关键词 压缩感知 块效应 L1同伦恢复算法 心电图 compressed sensing blocking artifact L1-homotopy recovery algorithm ECG
  • 相关文献

参考文献11

  • 1Richard Baraniuk,Mark Davenport,Ronald DeVore,Michael Wakin.A Simple Proof of the Restricted Isometry Property for Random Matrices[J]. Constructive Approximation . 2008 (3)
  • 2Donoho D L.Compressed sensingIEEE Transactions on In- formation Theory,2006.
  • 3Candès, Emmanuel J.,Romberg, Justin,Tao, Terence.Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory . 2006
  • 4Justin Romberg.Compressive Sensing by Random Convolution. SIAM Journal on Imaging Sciences . 2009
  • 5Wei LuN. Vaswani.Regularized Modified BPDN for Noisy Sparse Reconstruction With Partial Erroneous Support and Signal Value Knowledge. IEEE Transactions on Signal Processing . 2012
  • 6Wang Z,Bovik AC,Evans BL.Blind measurement of blocking artifacts in images. IEEE International Conference on Image Processing . 2000
  • 7Candes, Emmanuel J.,Wakin, Michael B.An introduction to compressive sampling: A sensing/sampling paradigm that goes against the common knowledge in data acquisition. IEEE Signal Processing Magazine . 2008
  • 8Namrata Vaswani.Kalman Filtered Compressed Sensing. IEEE International Conference on Image Processing . 2008
  • 9Ziniel J,Schniter P.Dynamic Compressive Sensing of Time-Varying Signals Via Approximate Message Passing. IEEE Transactions on Signal Processing . 2013
  • 10Asif M. S,Reddy D,Boufounos P. T."Streaming compressive sensing for high-speed periodic videos,". Proceedings of 17th IEEE International Conference on Image Processing (ICIP) . 2010

共引文献17

同被引文献36

  • 1KaergaardK, Jensen SH, Puthusserypady S. A comprehensiveperformance analysis of EEMD-BLMS and DWT-NN hybridalgorithms for ECG denoising[J]. Biomed Sign Proc Contr, 2016,25: 178-187.
  • 2YochumM, Renaud C, Jacquir S. Automatic detection of P, QRSand T patterns in 12 leads ECG signal based on CWT[J]. BiomedSign Proc Contr, 2016, 25: 46-52.
  • 3PadhyS, Sharma LN, Dandapat S. Multilead ECG datacompression using SVD in multiresolution domain[J]. Biomed SignProc Contr, 2015, 23: 10-18.
  • 4GrossiG, Lanzarotti R, Lin J. High-rate compression of ECGsignals by an accuracy-driven sparsity model relying on naturalbasis[J]. Digit Sign Proc, 2015, 45: 96-106.
  • 5EdwardJS, Ramu P, Swaminathan R. Imperceptibility - robustnesstradeoff studies for ECG steganography using continuous antcolony optimization[J]. Expert Syst Appl, 2015, 49: 123-135.
  • 6Kumar R, Kumar A, Singh GK. Hybrid method based on singularvalue decomposition and embedded zero tree wavelet technique forECG signal compression.[J]. Comput Meth Prog Biomed, 2016.
  • 7TawficI, Kayhan S. Compressed sensing of ECG signal forwireless system with new fast iterative method[J]. Comput MethProg Biomed, 2015, 122(3): 437-449.
  • 8SharmaL N. Coding ECG beats using multiscale compressedsensing based processing[J]. Comput Electr Eng, 2015, 45(C): 211-221.
  • 9Liu T, Si Y, Wen D, et al. Dictionary learning for VQ featureextraction in ECG beats classification[J]. Expert Syst Appl, 2016,53: 129-137.
  • 10Fatin A, Naomie S, Arief R, et all. Arrhythmia recognition andclassification using combined linear and nonlinear features of ECGsignals[J]. Comput Meth Prog Biomed, 2016, 127: 52-63.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部