期刊文献+

改进的基于局部块模型的行为识别算法

An Improved Action Recognition Algorithm Based on Local Part Model
下载PDF
导出
摘要 针对基于局部时空特征与特征词袋模型相结合的算法中计算效率低、识别率不高的问题,提出一种基于局部块模型与特征数据预处理结合的行为识别算法。该算法基于特征词袋模型,采用局部块模型提取特征,将多变量的复杂问题简化为低维空间的简单问题,对其数据处理过程进行改进,同时优化了局部块模型中的帧采样过程。与原算法相比,计算效率与识别率都有较大提升,较其他同类算法也具有一定优势。2个通用视频库上的实验证明了算法的有效性。 In order to solve action recognition system's efficiency and accuracy in complex environment,an improved method based on local part model and feature pre-processing was proposed. The algorithm was based on the bag of features,and local part model was used to extract features. The features were pre-processed through principal component analysis methods,meanwhile the local part model of frames in the sampling process was optimized. Experiments were carried on two benchmark datasets,named UCF Sports and HMDB51,respectively. The results showed that this algorithm had higher efficiency and accuracy than the original in complex environment. Compared with other methods,the proposed algorithm showed more accurate and efficient.
出处 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2016年第S2期121-126,共6页 Journal of Sichuan University (Engineering Science Edition)
基金 成都市科技惠民项目资助(2015-HM01-00293-SF) 特殊环境机器人技术四川省重点实验室项目资助(14zxtk03) 国家自然科学基金委员会和中国工程物理研究院联合基金资助项目(11176018)
关键词 行为识别 局部块模型 特征预处理 特征词袋模型 action recognition local part model feature pre-processing bag of features
  • 相关文献

参考文献2

二级参考文献34

  • 1Weinland D, Ronfard R, Boyer E. A survey of vision-based methods for action representation, segmentation and recogni- tion [ J ]. Computer Vision and Image Understanding, 2011, 115(2) :224 -241.
  • 2Chaaraoui A A, Climent-Perez P, Florez-Revueha F. Silhou- ette-based human action recognition using sequerlces of key poses [ J ]. Pattern Recognition Letters, 2013,34 ( 15 ) : 1799 - 1807.
  • 3Tran K N, Kakadiaris I A, Shah S K. Modeling motion of body parts for action recognition [ C ]//Proceedings of the British Machine Vision Conference 2011. Dundee: British Machine Vision Association Press,2011:64.1 -64.12.
  • 4Laptev I. On space-time interest points [ J ]. International Journal of Computer Vision, 2005,64 (2/3) : 107 - 123.
  • 5Dollar P, Rabaud V, Cottrell G, et al. Behavior recognition via sparse spatio-temporal features[ C ]. 2nd Joint IEEE In- ternational Workshop on Visual Surveillance and Perform- ance Evaluation of Tracking and Surveillance, 2005, Los Alamitors : IEEE Computer Scciety Press,2005 : 65 - 72.
  • 6Escobar M J, Kornprobst P. Action recognition via bio-in- spired features:The richness of center-surround interaction [ J ]. Computer Vision and Image Understanding, 2012,116 (5) :593 -605.
  • 7Chakraborty B, Holte M B, Moeslund T B, et al. Selective spatio-temporal interest points [ J ]. Computer Vision and Im- age Understanding,2012 (116) : 396 - 410.
  • 8Zhang X, Yang Y, Jiao L C. Manifold-constrained coding and sparse representation for human action recognition [ J ]. Pat- tern Recognition,2013.46(7) : 1819 - 1831.
  • 9Guha T, Ward R K. Learning sparse representations for hu- man action recognition [ J ]. IEEE Transactions on Pattern A- nalysis and Machine Intelligence, 2012, 34 ( 8 ) : 1576 - 1588.
  • 10Yan X, Luo Y. Recognizing human actions using a new de- scriptor based on spatial-temporal interest points and weigh- ted-0utput classifier [ J ]. Neurocomputing, 2012,87 ( 15 ) : 51 -61.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部