期刊文献+

Employing ZnS as a capping material for PbS quantum dots and bulk heterojunction solar cells

采用ZnS作为PbS量子点包覆材料及其体相太阳电池研究(英文)
原文传递
导出
摘要 Formation of bulk heterojunctions by incorporating colloidal quantum dots into a mesoporous substrate is anticipated to yield efficient charge collection and complete light absorption. However, it is still challenging in view of the bulky nature of the colloidal quantum dots and the ex situ deposition route. In this study, the feasibility of employing ZnS as a capping material for PbS quantum dots is dissected by carefully designed control experiments, with reference to the formation of bulk heterojunctions by successive ionic layer adsorption and reaction(SILAR) at ambient conditions.The results reveal that the underlying ZnS layer facilitates the PbS deposition by an ion exchange process, while the overlaying ZnS layer tends to cover the PbS in a manner similar to a physical stacking process. Therefore, PbS quantum dots capped with amorphous ZnS are developed with the SILAR technique, which could be used to fill up the mesoporous substrates and thus construct bulk heterojunctions.The hole collection is the limiting factor of such bulk heterojunction solar cells, as demonstrated by inserting a conductive polymer layer in the control devices. Further development of the quantum dot system is discussed in consideration of the fundamental issues presented in this study. 将胶体量子点引入到介孔基体中形成体相异质结预期能够产生高效的电荷收集和完全的光吸收.然而,鉴于胶体量子点个体体积较大和薄膜异位生长的特性,形成这样的异质结结构仍然存在巨大挑战.本论文针对此问题,通过严谨的实验设计,分析了采用连续离子层吸附反应法(SILAR)以ZnS作为PbS量子点包覆材料的可行性.实验结果表明底层ZnS通过离子交换的方式促进PbS的沉积,而顶层ZnS趋于通过物理堆垛的方式覆盖PbS,进而形成非晶态ZnS包覆的PbS量子点结构.该方法可用以填充介孔基体而形成体相异质结结构.在该体相异质结器件中加入导电有机物的研究表明该体系太阳电池受限于空穴收集.在此基础上,讨论了该体系量子点太阳电池进一步提升的途径.
作者 孙立东
出处 《Science China Materials》 SCIE EI CSCD 2016年第10期817-824,共8页 中国科学(材料科学(英文版)
基金 supported by Chongqing Research Program of Basic Research and Frontier Technology(cstc2015jcyjA90004) the National Natural Science Foundation of China(51501024) the Fundamental Research Funds for the Central Universities(106112016CDJZR135506)
关键词 quantum dots solar cells SILAR bulk heterojunction PBS quantum dots solar cells SILAR bulk heterojunction PbS
  • 相关文献

参考文献3

二级参考文献22

  • 1Bai Y, Mora-Sero L, De Angelis F et al (2014) Titanium dioxide nanomaterials for photovoltaic applications. Chem Rev 114:10095-10130.
  • 2Daghrir R, Drogui P, Robert D (2013) Modified TiO2 for environmental photocatalytic applications: a review. Ind Eng Chem Res 52:3581-3599.
  • 3Quan X, Yang SG, Ruan XL et al (2005) Preparation of titania nanotubes and their environmental applications as electrode. Environ Sci Technol 39:3770-3775.
  • 4Wu N, Wang J, Tafen D et al (2010) Shape-enhanced photocatalytic activity of single-crystalline anatase TiO2 (101) nanobelts. J Am Chem Soc 132:6679-6685.
  • 5Chen C, Cai W M, Long M C et al (2010) Synthesis of visiblelight responsive graphene oxide/TiO2 composites with p/n heterojunction. ACS Nano 4:6425-6432.
  • 6Asahi R, Morikawa T, Ohwaki T et al (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269-271.
  • 7Schneider J, Matsuoka M, Takeuchi M et al (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114:9919-9986.
  • 8Li JY, Lu N, Quan X et al (2008) Facile method for fabricating boron-doped TiO2 nanotube array with enhanced photoelectrocatalytic properties. Ind Eng Chem Res 47:3804-3808.
  • 9Liu L, Chen XB (2014) Titanium dioxide nanomaterials: selfstructural modifications. Chem Rev 114:9890-9918.
  • 10Peng ZA, Peng XG (2001) Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J Am Chem Soc 123:183-184.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部