期刊文献+

基于铜纳米材料及其组装的柔性电子技术(英文) 被引量:2

Copper nanomaterials and assemblies for soft electronics
原文传递
导出
摘要 柔性电子在可穿戴和生物植入等应用中发挥着越来越重要的作用.柔性电子在实现一定电子功能的同时,具备变形成任意形状的能力.该领域在过去的十年里进展显著,在柔性导体、半导体、介电材料的制备中成果颇多.在这些材料中,铜基柔性导体由于其价格低廉,地球储量丰富,光、电、机械性能优异,在柔性、可拉伸电极或者电路互连中有着广阔的应用前景.在这篇综述中,我们总结了这些材料的最新进展,详细讨论了铜纳米材料的合成、组装、抗氧化腐蚀策略以及它们在各个领域的应用(如柔性电极、传感器和其他柔性器件).最后,我们讨论了铜基柔性导体为应对更广泛的应用场景仍需面临的一系列挑战. Soft electronics that can simultaneously offer electronic functions and the capability to be deformed into arbitrary shapes are becoming increasingly important for wearable and bio-implanted applications.The past decade has witnessed tremendous progress in this field with a myriad of achievements in the preparation of soft electronic conductors,semiconductors,and dielectrics.Among these materials,copper-based soft electronic materials have attracted considerable attention for their use in flexible or stretchable electrodes or interconnecting circuits due to their low cost and abundance with excellent optical,electrical and mechanical properties.In this review,we summarize the recent progress on these materials with the detailed discussions of the synthesis of copper nanomaterials,approaches for their assemblies,strategies to resist the ambient corrosion,and their applications in various fields including flexible electrodes,sensors,and other soft devices.We conclude our discussions with perspectives on the remaining challenges to make copper soft conductors available for more widespread applications.
作者 冯阳 朱剑 Yang Feng;Jian Zhu
出处 《Science China Materials》 SCIE EI CSCD 2019年第11期1679-1708,共30页 中国科学(材料科学(英文版)
基金 supported by the National Natural Science Foundation of China (51873088) Tianjin Municipal Science and Technology Commission (18JCZDJC38400) in China “the Fundamental Research Funds for the Central Universities”, Nankai University (023/63191303)
关键词 copper NANOMATERIALS ASSEMBLIES composites STRETCHABLE CONDUCTORS SOFT ELECTRONICS copper nanomaterials assemblies composites stretchable conductors soft electronics
  • 相关文献

参考文献13

二级参考文献55

  • 1Li, G.; Zhu, R.; Yang, Y. Polymer solar cells. Nat. Photonics2012, 6, 153-161.
  • 2Costa, R. D.; Lodermeyer, F.; Casillas, R.; Guldi, D. M. Recent advances in multifunctional nanocarbons used in dye-sensitized solar cells. Energy Environ. Sci. 2014, 7, 1281-1296.
  • 3Docampo, P.; Ball, J. M.; Darwich, M.; Eperon, G. E.; Snaith,H. J. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat. Commun. 2013, 4, 2761.
  • 4Xing, G. C.; Mathews, N.; Sun, S. Y.; Lim, S. S.; Lam, Y. M.; Gratzel, M.; Mhaisalkar, S.; Sum, T. C. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 2013, 342, 344-347.
  • 5Hodes, G.; Cahen, D. Perovskite cells roll forward. Nat. Photonics 2014, 8, 87-88.
  • 6Yuhas, B. D.; Yang, P. D. Nanowire-based all-oxide solar cells. J. Am. Chem. Soc. 2009, 131, 3756-3761.
  • 7Musselman, K. P.; Wisnet, A.; Iza, D. C.; Hesse, H. C.; Scheu, C.; MacManus-Driscoll, J. L.; Schmidt-Mende, L. Strong efficiency improvements in ultra-low-cost inorganic nanowire solar cells. Adv. Mater. 2010, 22, E254-E258.
  • 8Cui, J. B.; Gibson, U. J. A simple two-step electrodeposition of Cu20/Zn0 nanopillar solar cells. J. Phys. Chem. C. 2010, 114, 6408-6412.
  • 9Cheng, K.; Li, Q. Q.; Meng, J.; Han, X.; Wu, Y. Q.; Wang, S. J.; Qian, L.; Du, Z. L. Interface engineering for efficient charge collection in Cu20/Zn0 heterojunction solar cells with ordered ZnO cavity-like nanopattems. Sol. Energy Mater. Sol. Cells 2013, 116, 120-125.
  • 10Fujimoto, K.; Oku, T.; Akiyama, T. Fabrication and characterization of Zn0/Cu20 solar cells prepared by electrodeposition. Appl. Phys. Express 2013, 6, 086503.

共引文献82

同被引文献15

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部