期刊文献+

带p(x)-调和算子的Kirchhoff型方程的多重解 被引量:2

Multiplicity of solutions for Kirchhoff type equation involving the p(x)-biharnonic operator
原文传递
导出
摘要 研究了一类Kirchhoff型p(x)-调和方程。利用临界点理论中的喷泉定理,获得了多重解存在的充分条件,推广和改进了一些已有的结果。 A class of Kirchhoff type equation involving the p( x)-biharnonic operator is ivestigated. By using fountain theorem in critical point theory,some sufficient conditions for the existence of multiplicity of solutions are obtained,which generalize and improve some existing resuls.
作者 张申贵
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2016年第10期48-53,64,共7页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(31260098) 天元数学基金资助项目(11326100) 西北民族大学中央高校基本科研业务费专项资助
关键词 Kirchhoff型方程 p(x)-调和算子 Navier边值问题 临界点 Kirchhoff type equation p(x)-biharnonic operator Navier boundary value problem critical point
  • 相关文献

参考文献12

  • 1李麟,唐春雷.EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR A CLASS OF p(x)-BIHARMONIC EQUATIONS[J].Acta Mathematica Scientia,2013,33(1):155-170. 被引量:5
  • 2Lingju Kong.??Eigenvalues for a fourth order elliptic problem(J)Proceedings of the American Mathematical Society . 2014 (1)
  • 3Yanheng Ding,Shixia Luan.??Multiple solutions for a class of nonlinear Schr?dinger equations(J)Journal of Differential Equations . 2004 (2)
  • 4张申贵.一类超线性p(x)-调和方程的无穷多解[J].山东大学学报(理学版),2012,47(10):116-120. 被引量:1
  • 5Abdelrachid El Amrouss,Fouzia Moradi,Mimoun Moussaoui.Existence of solutions for fourth-order PDEs with variable exponents. Electronic Journal of Oncology . 2009
  • 6Vasilij V. Zhikov.On some variational problems. Russ. J. Math. Phys . 1997
  • 7Chen, Yunmei,Levine, Stacey,Rao, Murali.Variable exponent, linear growth functionals in image restoration. SIAM Journal on Applied Mathematics . 2006
  • 8Willem M.Minimax Theorems. . 1996
  • 9Ruzicka M.Electrorheologial Fluids:Modeling and Mathematial Throry. . 2000
  • 10YIN Honghui,LIU Ying.Existence of three solutions for a Navier boundary value problem involving the p (x)-biharnonic operator. Bull.Korean Math Soc . 2013

二级参考文献11

  • 1刘玥,王征平.BIHARMONIC EQUATIONS WITH ASYMPTOTICALLY LINEAR NONLINEARITIES[J].Acta Mathematica Scientia,2007,27(3):549-560. 被引量:13
  • 2FAN Xianling. On the sub-supsulotion methods for p(x)-Laplacian equations[J]. J Math Anal Appl, 2007, 330:665-682.
  • 3FAN Xianling. Solutions of p (x)-Laplacian Dirichlet problems with singular coefficients [ J ]. J Math Anal Appl, 2005, 312:464-477.
  • 4FAN Xianling, ZHANG Qihu, ZHAO Dun. Eigenvalues of p(x)-Laplacian Dirichlet problem[J]. J Math Anal Appl, 2005, 302 : 306-317.
  • 5FAN Xianling, ZHANG Qihu, ZHAO Dun. Eigenvalues of p(x)-Laplacian Dirichlet problem[ J ]. J Math Anal Appl, 2005, 302 : 306-317.
  • 6AMROUSS A E, MORADI F, MOUSSOUI M. Existence of solutions for fourth-order PDES with variable exponents [ J ]. J Differential Equations, 2009, 153 : 1-13.
  • 7FAN Xianling. A Biezis-Nirenberg type theorem on local minimizers for p (x)-Kirchhoff Dirichlet problems and applications [J]. Differential Equation and applications, 2010, 2:537-551.
  • 8DING Yanheng, LUAN Shixia. Multiple solutions for a class of nonlinear Schrodinger equations [ J ]. J Differential Equations, 2004, 207: 423-457.
  • 9WILLEM M. Minimax theorems[M]. Boston: Birkhauser, 1996.
  • 10邓引斌,李亦.REGULARITY OF THE SOLUTIONS FOR NONLINEAR BIHARMONIC EQUATIONS IN R^N[J].Acta Mathematica Scientia,2009,29(5):1469-1480. 被引量:6

共引文献7

同被引文献1

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部