期刊文献+

关于伪黎曼空间形式中类空子流形Chen不等式的两个结果

Two results on Chen's inequalities for spacelike submanifolds of a pseudo-Riemannian space form
原文传递
导出
摘要 研究了伪黎曼空间形式中类空子流形δ-不变量δM的不等式中等号成立的情况,并将其推广为关于广义δ-不变量δ(n_1,…,n_k)的不等式,并且给出了满足不等式的一些例子。 The equality case of the inequality which concerns Chens δ-invariant δM for spacelike submanifolds of a pseudoRiemannian space form. Then the inequality involving the generalized δ-invariant δ( n_1,…,n_k) is generalized. Moreover,some examples are provided which satisfy the inequality.
作者 苏曼 张量
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2016年第10期59-64,共6页 Journal of Shandong University(Natural Science)
基金 安徽省高校优秀青年人才基金(2011SQRL021ZD)
关键词 伪黎曼空间形式 类空子流形 不等式 爱因斯坦流形 pseudo-Riemannian space form spacelike submanifold inequality Einstein manifold
  • 相关文献

参考文献12

  • 1Cihan \'Ozg\'ur.B. Y. Chen inequalities for submanifolds of a Riemannian manifold of quasi-constant curvature. Turk. J. Math . 2011
  • 2李光汉,吴传喜.SLANT IMMERSIONS OF COMPLEX SPACE FORMS AND CHEN'S INEQUALITY[J].Acta Mathematica Scientia,2005,25(2):223-232. 被引量:10
  • 3CHERN Shingshen.Minimal submanifolds in a Riemannian manifold. . 1968
  • 4张攀,张量,宋卫东.伪黎曼空间形式中类空子流形的几何不等式[J].山东大学学报(理学版),2014,49(6):91-94. 被引量:3
  • 5Bang-Yen Chen.Some new obstructions to minimal and Lagrangian isometric immersions. Jap. J. Math., New Ser . 2000
  • 6Tōru Ishihara.Maximal spacelike submanifolds of a pseudo-Riemannian space of constant curvature. The Michigan Mathematical Journal . 1988
  • 7ONEILL B.Semi-Riemannian geometry with applications to relativity. . 1983
  • 8Bang-Yen Chen.??Some pinching and classification theorems for minimal submanifolds(J)Archiv der Mathematik . 1993 (6)
  • 9Defever F,Mihai I,Verstraelen L.B -Y Chen’’s Inequality for Submanifolds of Sasakian Space Forms. Boll Unione Mat Ital . 2001
  • 10CHEN Bangyan.A Riemannian invariant for submanifolds in space forms and its applications. Geometry and Topology of submanifolds . 1994

二级参考文献21

  • 1李光汉,吴传喜.SLANT IMMERSIONS OF COMPLEX SPACE FORMS AND CHEN'S INEQUALITY[J].Acta Mathematica Scientia,2005,25(2):223-232. 被引量:10
  • 2CHENBangyen.Somepinchingandclassificationtheoremsforminimalsubmanifolds[J].ArchMath,1993,60:568-578.
  • 3CHERNShiingshen.MinimalsubmanifoldsinaRiemannianmanifold[M].Lawrence:UniversityofKansasPress,1968.
  • 4FERN?NDEZLM,FUENTESAM.SomerelationshipsbetweenintrinsicandextrinsicinvariantsofsubmanifoldsingeneralizedSspaceforms[EB/OL].arXivpreprintarXiv:13061655,2013.http://arxiv.org/pdf/13061655.pdf.
  • 5?ZGRCBY.CheninequalitiesforsubmanifoldsaRiemannianmanifoldofaquasiconstantcurvature[J].TurkJMath,2011,35:501-509.
  • 6LIXingxiao,HUANGGuangyue,XUJianlou.Someinequalitiesforsubmanifoldsinlocallyconformalalmostcosymplecticmanifolds[J].SoochowJournalofMathematics,2005,31(3):309.
  • 7ARAU'JOKO,BARBOSAER.PinchingtheoremsforcompactspacelikesubmanifoldsinsemiRiemannianspaceforms[J].DifferentialGeometryanditsApplications,2013,31(5):672-681.
  • 8CHENBangyen.RelationsbetweenRiccicurvatureshapeoperatorforsubmanifoldswitharbitrarycodimensions[J].GlasgowMathJ,1999,41:31-41.
  • 9LIUXimin,DAIWanji.Riccicurvatureofsubmanifoldsinaquaternionprojectivespace[J].CommunKoreanMathSoc,2002,17(4):625-634.
  • 10ARSLANK,EZENTASR,MIHAII,etal.RiccicurvatureofsubmanifoldsinKenmotsuspaceforms[J].IntJMathMathSci,2002,29:719-726.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部