摘要
在统计机器翻译中融入语言学知识具有重要的理论研究和应用价值.在考察了具有丰富的句法和语义信息的双语最大名词组块后,提出和实现了在树-串统计翻译模型中融入双语最大名词短语的统计机器翻译框架.通过在汉-英测试集的实验证明:相比基线模型,采用所述框架的翻译模型的BLEU值提高了1.66%,而且翻译速度也得到了提高.
It has important theoretical and application value to promote the statistical machine translation by integrating meaningful linguistic knowledge effectively.After inspected structural characteristics of maximal-length noun chunks with rich syntactic and semantic information,we proposed a statistical machine translation model which integrated with bilingual maximal-length noun chunks for improving an existing tree-to-string machine translation system.Under this scenario,we experimented on a Chinese-English corpus and achieved an improvement of 1.66 BLEU percentage point over a non-adapted state-of-the-art tree-to-string baseline system,and had a significant improvement over the baseline method on decoding speed in practice.
出处
《山东理工大学学报(自然科学版)》
CAS
2015年第6期11-15 19,共6页
Journal of Shandong University of Technology:Natural Science Edition
基金
国家重点基础研究发展计划(2013CB329303)
国家自然科学基金资助项目(61132009)
关键词
统计机器翻译
树-串翻译模型
双语最大名词组块
句子骨架
statistical machine translation
tree-to-string translation model
bilingual maximal-length noun chunk
sentence skeleton