期刊文献+

一种基于泰勒级数多元变量展开模型定位算法 被引量:1

A localization algorithm based on Taylor series multivariable expansion model
下载PDF
导出
摘要 为了提高无线传感器网络节点定位精度,构建了增加未知节点与未知节点间的距离信息的泰勒级数多元变量展开定位模型.在对该算法的求解过程中,首先利用最大似然估计法得到未知节点的初始位置,再运用加权最小二乘法计算其最优值作为未知节点的估计位置.仿真测试了不同距离测量误差和已知节点数目对定位误差的影响,以及算法的累计分布函数.结果表明,该算法能够有效提高节点定位精度. In order to improve positioning accuracy in wireless sensor networks ,a new Taylor se‐ries multivariable expansion localization model is established by the method of adding the dis‐tances information betw een unknow n nodes . In process of the algorithm solution , firstly the maximum likelihood estimation is utilized to obtain initial values of unknow n nodes . T hen ,its optimal values are calculated as the estimated location of unknown nodes by the weighted least squares method .To evaluate the performance of this algorithm ,simulations test the impact of different distance measurement error and the number of know n nodes on positioning error ,and the cumulative distribution function of algorithm .Simulation results show that the proposed al‐gorithm has achieved better performance on positioning accuracy and efficiency .
出处 《山东理工大学学报(自然科学版)》 CAS 2016年第3期61-65,共5页 Journal of Shandong University of Technology:Natural Science Edition
基金 山东省高校科技计划项目(J11LG24)
关键词 泰勒级数多元变量展开 定位模型 最大似然估计 无线传感器网络 Taylor series multivariable expansion localization model maximum likelihood estimation wireless sensor networks
  • 相关文献

参考文献15

二级参考文献91

  • 1谷明月.浅谈RFID技术在中国社会的发展[J].科协论坛(下半月),2009(12):89-89. 被引量:2
  • 2史有华,谢红,杨莘元.WCDMA网络中基于泰勒级数展开的TDOA定位技术研究[J].应用科技,2006,33(1):1-3. 被引量:2
  • 3王鼎,张莉,吴瑛.基于角度信息的约束总体最小二乘无源定位算法[J].中国科学(E辑),2006,36(8):880-890. 被引量:25
  • 4Chan T Y, Ho C K. A Simple and Efficient Estimator for Hyperbolic Location[J]. IEEE Trans. on Signal Processing, 1994, 42(8):1905-1915.
  • 5Foy H W. Position Location Solutions by Taylor-Series Estimation[J].IEEE Trans. on Aerospace and Electronic Systems 1976, AES-12(02):187-194.
  • 6INTANAGONWIWAT C, GOVINDAN R, ESTRIN D, et al. Directed Diffusion for Wireless Sensor Networking [ J ]. IEEE/ ACM Transaction on Netoworking, 2003, 11 (1) : 2-16.
  • 7BASAGNI S, CAROSI A, MELACHRINOUDIS E, et al. Protocols and Model for Sink Mobility in Wireless Sensor Networks [J]. ACM SIGMOBILE Mobile Computing and Communications Review, 2006, 10 (4) : 28-30.
  • 8LEWIS GIROD, DEBORAH ESTRIN. Robust Range Estimation Using Acoustic and Muhimodal Sensing [ C ] //Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'01). Maui, Hawaii, USA: IEEE Computer Society, 2001: 1312-1320.
  • 9SEAPAHN MEUERDICHIAN, FARINAZ KOUSHANFAR, MIODRAG POTKONJAK, et al. Coverage Problems in Wireless Ad-Hoc Sensor Networks [ C ] //Proceedings of Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies ( INFOCOM 2001 ). Anchorage, Alaska, USA : IEEE Computer and Communications Societies, 2001 : 1380- 1387.
  • 10YOUSSEF CHARFI, NAOKIWAKAMIYA, MASAYUKI MURATA. A Synchronization-Based Muhi-Task Communication Mechanism for Wireless Sensor Networks [ J]. ACM SIGMOBILE Mobile Computing and Communications Review, 2008, 12 (2) : 44-46.

共引文献130

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部