期刊文献+

Impact of polymer mixtures on the stabilization and erosion control of silty sand slope 被引量:5

Impact of polymer mixtures on the stabilization and erosion control of silty sand slope
下载PDF
导出
摘要 Silty sand can be prone to erosion because it is short of stability cementation materials. In recent years, various emerging soil stabilizers, especially natural organic substance and polymer, have been used to improve soil strength, water stability and ability of erosion resistance. In this study, a new type of soil stabilization additive modified carboxymethyl cellulose(M-CMC), consisting of carboxymethyl cellulose(CMC) and polyacrylamide(PAM), was developed for stabilization treatment of silty sand. A series of laboratory tests were conducted to evaluate the performance of M-CMC application on shear strength, permeability, water susceptibility and microstructure of the silty sand soil treated with additive concentration range of 0%-1.3%. Moreover, rainfall simulation experiments were conducted to evaluate the effect of M-CMC on the erosion control of silty sand which compacted soil in a large-sized runoff(1 m^2) plots. Test plot which treated with 1.1% concentration of soil stabilizer and control plot which treated with same amount of water were cured outdoor for 50 days before rainfall simulation test. Rainfall intensity was applied at 120 mm·h-1 for 60 min. Finally, a field test is performed in order to assess the practical application effect of silty sand with 1.1% M-CMC. In general, the results showed that an increase of the concentration of M-CMC resulted in an improvement in water susceptibility and shear strength but a decrease in the infiltration rate. Internal friction angle of the treated soil remarkably increased under a low M-CMC concentration(less than 0.7%), while cohesion of them sharply increased under a relatively high M-CMC concentration(larger than 0.7%). Water susceptibility of the treated samples was improved remarkably under a relatively high M-CMC concentration(larger than 0.7%). Permeability coefficient of them decreased significantly when the M-CMC concentration was increased from 0 to 0.5% and, then, from 0.9% to 1.3%. Based on the images obtained from a scanning electron microscopy(SEM), the "coating" and "netting" effects were attributable to the observed improvement of the treated soil. When a plot was protected by a thin layer of soil treated with 1.1% MCMC, its erosion resistance was greatly improved, infiltration rate of water and soil loss yield of plot decreased greatly and even though under a rainfall intensity of 120 mm·h-1. The field test with long-term monitoring(three years) confirmed the M-CMC can effectively control erosion of silty sand slopes for a prolonged period of time. Silty sand can be prone to erosion because it is short of stability cementation materials. In recent years, various emerging soil stabilizers, especially natural organic substance and polymer, have been used to improve soil strength, water stability and ability of erosion resistance. In this study, a new type of soil stabilization additive modified carboxymethyl cellulose(M-CMC), consisting of carboxymethyl cellulose(CMC) and polyacrylamide(PAM), was developed for stabilization treatment of silty sand. A series of laboratory tests were conducted to evaluate the performance of M-CMC application on shear strength, permeability, water susceptibility and microstructure of the silty sand soil treated with additive concentration range of 0%-1.3%. Moreover, rainfall simulation experiments were conducted to evaluate the effect of M-CMC on the erosion control of silty sand which compacted soil in a large-sized runoff(1 m^2) plots. Test plot which treated with 1.1% concentration of soil stabilizer and control plot which treated with same amount of water were cured outdoor for 50 days before rainfall simulation test. Rainfall intensity was applied at 120 mm·h-1 for 60 min. Finally, a field test is performed in order to assess the practical application effect of silty sand with 1.1% M-CMC. In general, the results showed that an increase of the concentration of M-CMC resulted in an improvement in water susceptibility and shear strength but a decrease in the infiltration rate. Internal friction angle of the treated soil remarkably increased under a low M-CMC concentration(less than 0.7%), while cohesion of them sharply increased under a relatively high M-CMC concentration(larger than 0.7%). Water susceptibility of the treated samples was improved remarkably under a relatively high M-CMC concentration(larger than 0.7%). Permeability coefficient of them decreased significantly when the M-CMC concentration was increased from 0 to 0.5% and, then, from 0.9% to 1.3%. Based on the images obtained from a scanning electron microscopy(SEM), the "coating" and "netting" effects were attributable to the observed improvement of the treated soil. When a plot was protected by a thin layer of soil treated with 1.1% MCMC, its erosion resistance was greatly improved, infiltration rate of water and soil loss yield of plot decreased greatly and even though under a rainfall intensity of 120 mm·h-1. The field test with long-term monitoring(three years) confirmed the M-CMC can effectively control erosion of silty sand slopes for a prolonged period of time.
出处 《Journal of Mountain Science》 SCIE CSCD 2019年第2期470-485,共16页 山地科学学报(英文)
基金 financially supported by the National Key R&D Program(2017YFC1501002) the Major Program of the National Science Foundation of China(No.41790445)
关键词 Soil STABILIZATION WATER SUSCEPTIBILITY permeability Erosion WATER RETENTION CEMENTATION Soil stabilization Water susceptibility permeability Erosion Water retention Cementation
  • 相关文献

参考文献4

二级参考文献69

共引文献74

同被引文献54

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部