期刊文献+

Influences of soil moisture and salt content on loess shear strength in the Xining Basin, northeastern Qinghai-Tibet Plateau 被引量:12

Influences of soil moisture and salt content on loess shear strength in the Xining Basin, northeastern Qinghai-Tibet Plateau
下载PDF
导出
摘要 Moisture and salt content of soil are the two predominant factors influencing its shear strength. This study aims to investigate the effects of these two factors on shear strength behavior of loess in the Xining Basin of Northeast Qinghai-Tibet Plateau, where such geological hazards as soil erosion, landslides collapse and debris flows are widespread due to the highly erodible loess. Salinized loess soil collected from the test site was desalinized through salt-leaching in the laboratory. The desalinized and oven-dried loess samples were also artificially moisturized and salinized in order to examine how soil salinity affects its shear strength at different moisture levels. Soil samples prepared in different ways(moisturizing, salt-leaching, and salinized) were measured to determine soil cohesion and internal friction angle. The results show that salt-leaching up to 18 rounds almost completely removed the salt content and considerably changed the physical components of loess, but the soil type remained unchanged. As salt content increases from 0.00% to 12.00%, both the cohesion and internal friction angle exhibit an initial decrease and then increase with salt content. As moisture content is 12.00%, the salt content threshold value for both cohesion and internal friction angle is identified as 3.00%. As the moisture content rises to 16.0% and 20.00%, the salt content threshold value for cohesion is still 6.00%, but 3.00% for internal friction angle. At these thresholds soil shear strength is the lowest, below which it is inversely related to soil salinity. Beyond the thresholds, however, the relationship is positive. Dissimilar to salinity, soil moisture content exerts an adverse effect on shear strength of loess. The findings of this study can provide a valuable guidance on stabilizing the engineering properties of salinized loess to prevent slope failures during heavy rainfall events. Moisture and salt content of soil are the two predominant factors influencing its shear strength. This study aims to investigate the effects of these two factors on shear strength behavior of loess in the Xining Basin of Northeast Qinghai-Tibet Plateau, where such geological hazards as soil erosion, landslides collapse and debris flows are widespread due to the highly erodible loess. Salinized loess soil collected from the test site was desalinized through salt-leaching in the laboratory. The desalinized and oven-dried loess samples were also artificially moisturized and salinized in order to examine how soil salinity affects its shear strength at different moisture levels. Soil samples prepared in different ways(moisturizing, salt-leaching, and salinized) were measured to determine soil cohesion and internal friction angle. The results show that salt-leaching up to 18 rounds almost completely removed the salt content and considerably changed the physical components of loess, but the soil type remained unchanged. As salt content increases from 0.00% to 12.00%, both the cohesion and internal friction angle exhibit an initial decrease and then increase with salt content. As moisture content is 12.00%, the salt content threshold value for both cohesion and internal friction angle is identified as 3.00%. As the moisture content rises to 16.0% and 20.00%, the salt content threshold value for cohesion is still 6.00%, but 3.00% for internal friction angle. At these thresholds soil shear strength is the lowest, below which it is inversely related to soil salinity. Beyond the thresholds, however, the relationship is positive. Dissimilar to salinity, soil moisture content exerts an adverse effect on shear strength of loess. The findings of this study can provide a valuable guidance on stabilizing the engineering properties of salinized loess to prevent slope failures during heavy rainfall events.
出处 《Journal of Mountain Science》 SCIE CSCD 2019年第5期1184-1197,共14页 山地科学学报(英文)
基金 financially supported by the National Natural Science Foundation of China (Grant Nos. 41572306, 41162010) Natural Science Foundation of Qinghai Province (Grant No.2014ZJ-906) Hundred Talents Program in Chinese Academy of Sciences (Grant No. Y110091025) Scientific and Technologic Support Plan of Qinghai Province (2015-SF-117) Changjiang Scholar Program and Innovative Research Team Building, MOE Grant Number (IRT_17R62) the 111 Project (Grant No. D18013)
关键词 Salinized LOESS Desalinized LOESS Salt-leaching Shear strength indices Moisture CONTENT Salt CONTENT Salinized loess Desalinized loess Salt-leaching Shear strength indices Moisture content Salt content
  • 相关文献

参考文献14

二级参考文献139

共引文献475

同被引文献138

引证文献12

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部