期刊文献+

BP神经网络在水轮机调节过程中的应用 被引量:4

Application of BP Neural Network in Water Turbine Regulating System
下载PDF
导出
摘要 由于水轮机调节系统的大惯性、"水锤"效应等特点及其结构复杂等问题,采用传统的常规PID控制已很难满足控制要求,控制品质也难以改善,控制过程中易发生超调量大、震荡频次多、收敛时间过长等问题。对此,在常规PID控制基础上设计了基于BP神经网络自适应PID控制,并在Matlab软件中完成相关程序的编写及仿真试验。仿真结果表明,基于BP神经网络自适应PID控制是一种有效的水轮机调速器参数整定方法,相较于常规PID控制能获得更好的动态性能。 As for the features of big inertia of water turbine regulating system,the effect of water hammer and its complex structure,the traditional PID control is difficult to meet the control requirements,and it is hard to improve the control quality.Some problems occurred in the control process,such as large overshoot,high-frequency oscillation and long-time convergence.Aiming at these problems,self-adaptive PID control model based BP neural network was designed,and it was completed by writing the related program and simulation experiments in the Matlab software.The simulation results show that the proposed adaptive PID control is an effective method to set the parameters of hydraulic turbine regulation system,and it has a better dynamic performance compared with the conventional PID control.
出处 《水电能源科学》 北大核心 2017年第7期176-178,57,共4页 Water Resources and Power
基金 华北水利水电大学研究生教育创新计划基金(YK2016-08) 河南省高等学校重点科研项目(16A570007)
关键词 水轮机调节系统 PID控制 BP神经网络 MATLAB仿真 water turbine regulation system PID control BP neural network Matlab simulation
  • 相关文献

参考文献4

二级参考文献51

共引文献53

同被引文献27

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部