摘要
为更好地反映河道洪水的实际槽蓄关系,以非线性马斯京根模型(NMM)为基础,采用对数型公式来定量计算NMM的非线性指数,提出了变指数非线性马斯京根模型(VEP-NMM),并采用免疫灰狼优化算法(IGWO)进行参数优化率定,IGWO针对灰狼优化算法(GWO)易早熟收敛的问题,引入免疫克隆选择操作来保证种群多样性和提高搜索能力。将基于IGWO的VEP-NMM应用于河段洪水演进模拟中的结果表明,该方法合理可行,模拟精度更高。
In order to better reflect the actual channel storage relation,on the basis of Nonlinear Muskingum model(NMM),Logarithmic formula is adopted to calculate the nonlinear exponent parameter.Thus,Nonlinear Muskingum Model with Variable Exponent Parameter(VEP-NMM)was present.And then wolf optimization algorithm(GWO)was proposed for parameter estimation of VEP-NMM.At the same time,immune clonal selection operation was applied to enhance search ability and ensure the population diversity,thus immune wolf optimization algorithm(IGWO)was proposed.Finally,river flood routing simulation based on VEP-NMM and IGWO were implemented.The calculation results show that the method is reasonable and feasible,and the simulation accuracy is higher.
出处
《水电能源科学》
北大核心
2017年第12期1-5,共5页
Water Resources and Power
基金
国家重点研发计划重点专项项目(2016YFC0402202)
关键词
非线性马斯京根模型
变指数
灰狼优化算法
免疫克隆
参数率定
nonlinear Muskingum model
variable exponent parameter
grey optimization algorithm
immune clonal selection
parameter estimation