期刊文献+

挠力河流域地下水动态特征分析及预测 被引量:5

Analysis and Prediction of Dynamic Characteristics of Groundwater Level in Naoli River Basin
下载PDF
导出
摘要 为分析和预测挠力河流域地下水动态特征,采用研究区2001~2014年16口潜水观测井水位检测数据和11个水文站降水数据,运用衬度系数方差分析法和相关分析法分析了地下水埋深影响因素,采用BP神经网络预测了地下水位埋深。结果表明,研究区地下水动态类型主要为入渗-蒸发型和入渗-开采型,地下水位埋深空间上呈现西北部略有升高,东部略有下降的特点;流域内地下水埋深波动幅度较大,东部及中北部波动幅度较大,西北部地区波动幅度最小;挠力河流域地下水埋深与降水量的相关性呈现明显的差异性,东部和西南部相关性较显著,中北部相关性较弱;BP神经网络预测得出2015年地下水水位仍存在一定的下降趋势。研究结果为挠力河流域地下水资源可持续利用和保护提供参考。 In order to analyze and predict the dynamic characteristics of groundwater in Naoli River Basin,based on the water level monitoring data of 16 diving observation wells and the rainfall data of 11 hydrological stations from 2001 to2014 in the study area,contrast analysis of variance and correlation analysis were used to analyze the factors for influencing the depth of groundwater table.And then BP neural network was adopted to predict the depth of groundwater table.The results show that the dynamic types of groundwater are mainly infiltration-evaporization and infiltration-exploitation in the study area.The spatial distribution of groundwater table shows a slight increase in the northwest and a slight decrease in the east.The groundwater depth in the basin fluctuates.The amplitude is larger in the eastern part and central part of North China and the fluctuation in the northwestern part is the smallest.The correlation between groundwater depth and rainfall in Naoli River Basin shows obvious difference,and the correlation between the east part and the southwest part is significant.The correlation is weak for central part of North China;BP neural network predicts that there will be a certain downward trend in groundwater level in 2015.The results provide reference for the sustainable utilization and protection of groundwater resources in Naoli River Basin.
出处 《水电能源科学》 北大核心 2017年第12期144-147,共4页 Water Resources and Power
基金 国家自然科学基金项目(41572216) 中国地质调查局沈阳地质调查中心项目(121201007000150012) 吉林省自然科学基金项目(2014011164JC)
关键词 挠力河流域 地下水动态 衬度系数方差 相关性分析 BP神经网络 Naoli River Basin dynamic characteristics of groundwater variance of contrast coefficient correlation analysis BP neural network
  • 相关文献

参考文献3

二级参考文献16

共引文献87

同被引文献61

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部