期刊文献+

AERODYNAMIC DESIGN METHOD OF CASCADEPROFILES BASED ON LOAD AND BLADETHICKNESS DISTRIBUTION

AERODYNAMIC DESIGN METHOD OF CASCADEPROFILES BASED ON LOAD AND BLADETHICKNESS DISTRIBUTION
下载PDF
导出
摘要 A cascade profile design method was proposed using the aerodynamic load and blade thickness distribution as the design constraints, which were correspondent to the demands from the aerodynamic characteristics and the blade strength. These constraints,together with all the other boundary conditions , were involved in the stationary conditions ofa variational principle , in which the angle-function was employed as the unknown function.The angle-function ( i. e. , the circumferential angular coordinate) was defined in the image plane composed of the stream function coordinate ( circumferential direction ) and streamline coordinate. The solution domain, i.e., the blade-to-blade passage, was transformed into a square in the image plane, while the blade contour was projected to a straight line ; thus, the difficulty of the unknown blade geometry was avoided. The finite element method was employed to establish the calculation code. Applications show that this method can satisfy the design requests on the blade profile from both aerodynamic and strength respects. In addition, quite different from the most inverse-problem approaches that often encounter difficulties in the convergence of iteration, the present method shows a stable and fast convergence tendency. This will be significant for engineering applications. A cascade profile design method was proposed using the aerodynamic load and blade thickness distribution as the design constraints, which were correspondent to the demands from the aerodynamic characteristics and the blade strength. These constraints,together with all the other boundary conditions , were involved in the stationary conditions ofa variational principle , in which the angle-function was employed as the unknown function.The angle-function ( i. e. , the circumferential angular coordinate) was defined in the image plane composed of the stream function coordinate ( circumferential direction ) and streamline coordinate. The solution domain, i.e., the blade-to-blade passage, was transformed into a square in the image plane, while the blade contour was projected to a straight line ; thus, the difficulty of the unknown blade geometry was avoided. The finite element method was employed to establish the calculation code. Applications show that this method can satisfy the design requests on the blade profile from both aerodynamic and strength respects. In addition, quite different from the most inverse-problem approaches that often encounter difficulties in the convergence of iteration, the present method shows a stable and fast convergence tendency. This will be significant for engineering applications.
作者 姚征 刘高联
出处 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2003年第8期886-892,共7页 应用数学和力学(英文版)
基金 Foundation items: the National Natural Science Foundation of China (50136030) the Shanghai Major Subject Item: Power Source Island System Research
关键词 cascade design hybrid problem variational principle finite element method cascade design hybrid problem variational principle finite element method
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部