期刊文献+

经典划分聚类分析方法及算例

Summary of Two Classic Partitioning Cluster Analysis
原文传递
导出
摘要 聚类分析方法在大数据时代是数据挖掘(Date Mining)、科学研究和机器学习(Machine Learning)的基础性工具。本文在收集、整理已有研究成果的基础上,对K-均值和K-中心点这两种经典划分式聚类分析方法的原理、优缺点及适用范围进行了重点阐述,并通过算例对比说明孤立点对两种经典算法的不同影响,对科研工作者更高效和便捷地寻求适用于自己研究领域的聚类分析方法、取得科学有效的研究成果具有重要意义。 Clustering Analysis is the basic tool of data mining,scientific research and machine learning in big data era.Based on summarizing the previous studies,the theories,pros and cons of the two classic clustering analysis methods were explained,which were called K-means and K-medoids.Through the numerical examples of isolated points,the difference between the two methods was indicated.This paper had significance to help researchers choose suitable cluster analysis method more efficiently and conveniently.
作者 郑庆涛 赵亚敏 Zheng Qingtao;Zhao Yamin(Institute of Crustal Dynamics, CEA, Beijing, 100085, China)
出处 《地壳构造与地壳应力文集》 2016年第2期157-165,共9页 Bulletin of the Institute of Crustal Dynamics
基金 北京市科技新星计划资助项目(Z121106002512059) 国家自然科学基金资助项目(51108428) 中国地震局地壳应力研究所中央级公益性科研院所基本科研业务专项资助项目(项目号ZDJ2013-03)
关键词 聚类分析 划分聚类 K-均值聚类法 K-中心点聚类法 Cluster Analysis Partitioning Methond K-means K-medoids
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部