期刊文献+

基于最小互信息原理的机械振动源分离研究 被引量:1

Study on Separation of Mechanical Vibration Based on the Principle of the Minimum Mutual Information
下载PDF
导出
摘要 盲源分离技术是近年来出现的一种先进的信号处理方法。该文推导了基于最小互信息原理的自然梯度法,用于机械振动信号源的分离。实验证明,该方法是分离机械振动信号源的一种有效方法。 Method for Blind Separation of sources is the Modern Processing Method for Signal. Based on the principle of the minimum mutual information natural gradient is proposed. which is used separation of signal sources of mechanical vibration, In the experiment, comparison is made among frequency spectral and waveforms of signals before and after separating, which confirms the feasibility of separation mechanical vibration signals by using the referred process.
出处 《机电工程》 CAS 2003年第5期44-46,共3页 Journal of Mechanical & Electrical Engineering
基金 浙江省自然科学基金(501004)
关键词 机械振动 最小互信息原理 信号盲源分离 机械设备 故障诊断 mechanical vibration technique blind separation of sources natural gradient
  • 相关文献

参考文献6

  • 1刘琚,梅良模,何振亚.一种盲信号分离的信息理论方法[J].山东大学学报(自然科学版),1998,33(4):398-403. 被引量:6
  • 2卢文洋 杜润生.机械工程测试信号信号分析[M].武汉:华中理工大学出版社,1999.8.
  • 3卢文洋 杜润生.机械工程测试·信号·信号分析[M].武汉:华中理工大学出版社,1999,8..
  • 4Shun-Ichi Amari, Andrzej cicheeki, Adaptive blind signal Processing-Neural Network approaches,Proc. IEEE, 1998.
  • 5Howard Hua Yang, shun-ichi Amari. Adaptive online learning algorithms for blind separation, Maximum Faltropy and Minimum Mutual information[J]. Neural Computation, 1997,9:1457 - 1482.
  • 6Howard Hua Yang, shun-ichi Amari, Andmej cichocki. Informationtheoretic approach to blind separation of sources in non-linear mixture[J]. signal processing, 1998,64.291 - 300.

共引文献5

同被引文献14

  • 1李良敏.基于遗传算法的盲源分离在轴承诊断中的应用[J].轴承,2005(9):31-34. 被引量:13
  • 2胥永刚,李强,王正英,王太勇.基于独立分量分析的机械故障信息提取[J].天津大学学报,2006,39(9):1066-1071. 被引量:21
  • 3Hyvarinen A,Oja E. A fast fixed point algorithm for independent component analysis [ J ]. Neural Computation, 1997,9 (7) : 1483 - 1492.
  • 4Cardoso J F. High-order contrasts for independent component a- nalysis [ J ]. Neural Computation, 1999,11 ( 1 ) : 157-192.
  • 5DudaRO,HartPE,StrokDG.模式分类[M].李宏东,等译.2版.北京:机械工业出版社,2009:389-390.
  • 6Karvanen J, Eriksson J, Koivunen V. Pearson system based method for blind separation[ C ]//Proceedings of 2nd Interna- tional Workshop on Independent Component Analysis and Blind Signal Separation. Helsinki: IEEE ,2000:585-590.
  • 7Barlow H. Unsupervised learning[J].Neural Computation, 1989 (1) :295-311.
  • 8Ozertem U, Uysal I, Erdogmus D. Continuously differentiable sample-spacing entropy estimation[ J]. IEEE Trans Neural Net- works ,2008,19 ( 11 ) : 1978-1984.
  • 9Bach F,Jordan M. Kernel independent component analysis[ J]. Journal of Machine Learning Research ,2002 ( 3 ) : 1-48.
  • 10Ypma A,Leshem A. Blind separation of machine vibration with bilinear forms [ C ]//Proceedings of 2nd International Workshop on Independent Component Analysis and Blind Signal Separa- tion. Helsinki : IEEE,2000 : 109-114.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部