摘要
本文利用作者在前一篇文章中提出的无序系统中电磁耦合场量子的量子理论,讨论了掺杂对玻璃中瑞利散射的影响。文章给出了瑞利散射截面随参量y=(u_d)/(u_b)和 z=(ω_d)/(ω_b) 变化的计算曲线,其中 u_d,ω_d 和 u_b,ω_b 分别是杂质和基体原子的电偶极矩和跃迁频率。计算表明:当参数 y,z 在某一区域取值时,掺杂可使瑞利散射减小。利用所得结果,本文解释了在实验中观察到的一些掺杂元素使SiO_2玻璃中瑞利散射减小的现象。
Based on the quantum theory of polaritons in disordered materials proposed in a previous article by the same authors,this paper discusses the effects of dopings on the Rayleigh scatterings in glasses.The calculated curves are given for the Rayleigh scattering cross-sections as a function of parameters y=u_d/u_b and z=ω_d/ω_b, where u_d,ω_d and u_b,ω_b are electric dipoles and transition frequencies of the doped and host atoms,respectively.The calculation shows that when y and z lie in a certain region,doping can reduce the Rayleigh scattering.The results are used to explain the experimental fact that certain doping atoms reduce the Rayleigh scattering in SiO_2 glass.
出处
《上海交通大学学报》
EI
CAS
1987年第5期55-63,126,共10页
Journal of Shanghai Jiaotong University
关键词
瑞利散射
极化声子
无序
掺杂
rayleigh scattering
polaritons
disorder
doping