期刊文献+

基于协同表示的声振传感器网络车辆分类识别 被引量:2

Vehicle Recognition in Acoustic and Seismic Networks via Collaboration Representation
下载PDF
导出
摘要 针对使用单一信号分类的现有车辆识别技术的不足,提出了一种基于声音信号与振动信号协同表示的车辆分类识别方法.利用梅尔倒谱系数(MFCC)提取车辆的声音信号和振动信号特征,分别对提取的2种信号特征进行多任务训练分类,以获得多任务协同表示的重构误差并对其进行加权处理,得出被检测目标的分类识别结果.结果表明,所提出的车辆分类识别方法对于车辆目标具有较好的分类效果和较高的识别效率. Aiming at the defects of the current recognition methods using single signal,we propose a vehicle recognition method based on the collaboration representation of acoustical and vibrative signals.Firstly,Mel-frequency cepstral coefficients(MFCCs)are used to extract the acoustical and vibrative features of vehicles.Then,multitask training of classification is carried out separately by two kinds of signal features.Finally,the reconstruction error of multitask collaboration representation is obtained through the signal features and the target is classified according to the reconstruction error.Experiments indicate that this method has better classification effect and higher recognition efficiency,compared with the existing methods.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2018年第1期103-110,共8页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金项目(61771299 61301027)资助
关键词 车辆识别 协同表示 多任务分类 特征提取 重构误差 vehicle recognition collaboration representation multitask classification feature extraction reconstruction error
  • 相关文献

参考文献8

二级参考文献108

共引文献43

同被引文献20

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部