期刊文献+

基于柔顺机构的减振电极的植入损伤对比分析 被引量:1

A Comparative Study on Tissue Injury Caused by Implantation Based on Electrode with the Capability of Micro-Motion Attenuation
下载PDF
导出
摘要 为了验证具有柔顺机构的减振神经微电极在相应条件下的植入过程中减少生物组织损伤的有效性,基于电极植入损伤评估系统,分别使用减振电极与参照电极在不同的植入深度(轴向位移1.5,3.0和4.5mm)与植入速度(50,100,500,1 000,1 500和2 000μm/s)条件下进行植入损伤对比实验.该实验方法规避了生物活体实验的不确定性,且具有模拟实验的可控性.对比分析结果表明:当植入深度为1.5mm时,减振电极在减小电极植入损伤方面并没有明显优势;植入深度分别为3.0和4.5mm时减振电极最大组织应变均随着植入速度的增加而减小,其在减小组织应变及力学性能方面优势均较为明显. In order to attest the validity of neural electrode with the capability of micro-motion attenuation,comparative studies based on evaluation system for testing tissue injury were conducted.Different implantation parameters(depth:1.5,3,4.5 mm;insertion speed:50,100,500,1 000,1 500,2 000μm/s)were set respectively for the experiment with the micro-motion attenuation electrode and the common electrode to study the affects of the two electrodes.This method is controlable,and can effectly avoid the uncertainty of vivo experiments.The conclusion was found that the modified electrode is not better than the reference electrode at the depth of 1.5 mm.But it has obvious advantage on decreasing the tissue injury when the insertion depths are 3 mm and 4.5 mm.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2018年第2期188-193,共6页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金项目(51675330)资助
关键词 神经电极 植入参数 植入损伤 数字图像相关法 植入力 neural probe insertion parameters tissue injury digital image correlation residual force
  • 相关文献

参考文献1

二级参考文献18

  • 1刘仁强,葛巧德,高峰,刘品宽,岳义,何俊,陈杰,赵现朝.一种新型基于光纤柔性铰链的六维微位姿并联测量平台[J].新型工业化,2013,2(4):8-17. 被引量:7
  • 2Winslow B D, Christensen M B, Yang W K, etal. A comparison of the tissue response to chronically im- planted Parylene-C-coated and uncoated planar silicon microelectrode arrays in rat cortex[J]. Biomaterials, 2010, 31(35): 9163-9172.
  • 3Lai H Y, Liao L D, Lin C T, etal. Design, simula- tion and experimental validation of a novel flexible neural probe for deep brain stimulation and multi- channel recording[J]. Journal of Neural Engineering, 2012, 9(3) :036001.
  • 4Gutowski S M, Templeman K L, South A B, et al. Host response to microgel coatings on neural electrodes implanted in the brain[J]. Journal of Biomedical Materi- als Research Part A, 2014, 102(5): 1486-1499.
  • 5Li M, Yan Y, Wang Q, et al. A simulation of cur-rent focusing and steering with penetrating optic nerve electrodes[J]. Journal of Neural Engineering, 2013, 10(6) :066007.
  • 6Seymour J P, Kipke D R. Neural probe design for re- duced tissue encapsulation in CNS[J]. Biomaterials, 2007, 28(25) :3594-3607.
  • 7Winslow B D, Christensen M B, Yang W K, etal. A comparison of the tissue response to chronically im- planted Parylene-C-coated and uncoated planar silicon microelectrode arrays in rat cortex[J]. Biomaterials, 2010, 31(35) :9163-9172.
  • 8Welberg L. Brain-machine interfaces: Restoring movement in a paralysed hand[J]. Nature Reviews Neuroscience, 2012, 13 (6) : 360-361.
  • 9Moxon K A, Hallman S, Sundarakrishnan A, et al. Long-term recordings of multiple, single-neurons for clinical applications: the emerging role of the bioac- tive microelectrode[J]. Materials, 2009, 2(4) : 1762- 1794.
  • 10Lee H, Bellamkonda R V, Sun W, etal. Biomechan- ical analysis of silicon microelectrode-induced strain in the brain[J]. Journal of Neural Engineering, 2005, 2 (4) :81.

共引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部