期刊文献+

自然通气状态下半浸桨水动力特性数值分析 被引量:6

Numerical Analysis of Hydrodynamic Characteristics of Surface Piercing Propeller Under Naturally Ventilated Condition
下载PDF
导出
摘要 为了研究自然通气状态下半浸桨的水动力特性,以雷诺时均(RANS)方程求解流场,同时结合流体体积(VOF)方法和滑移网格技术对标准半浸桨模型841B非定常气液两相混合流场进行数值模拟.数值分析结果表明,推力系数KT和转矩系数10 KQ的计算结果与试验值吻合良好,尤其在设计点附近,两者误差均在5%以内.在尾流场中,空气腔呈螺旋状向下游发展,螺旋的直径先增大再减小,最后螺旋状的空气腔逐渐消失.由于浸深较小,半浸桨在水平方向、垂直方向上均受到很大的力和力矩.半浸桨的尾流场以自由液面为界,速度发生突变.桨盘面之前,半浸桨通过抽吸作用影响流场;桨盘面之后,滑流作用主导流场. To study the hydrodynamic characteristics of surface piercing propeller under natural ventilation condition,the numerical simulation on the unsteady gas-liquid two-phase flow field of the standard model841 Bwas performed by solving RANS equation and combining it with the VOF method and using sliding mesh technique.The results show that the calculated values of thrust coefficient KTand torque coefficient10 KQare in good agreement with the experimental data;especially near the design point,the errors of both are within 5%.The air cavity develops downstream in spirals in the wake field;the diameter of the spiral first increases and then decreases;finally,the spiral cavity gradually disappears.The forces/moments acting on the surface piercing propeller under small immersion condition are very large in horizontal and vertical directions.The wake flow field of surface piercing propeller is bounded by the free surface.The velocity in the wake field mutates in the free surface.In front of the disk,surface piercing propeller affects the flow field by suction effect;whereas the slipstream effect dominates the flow field behind the disk.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2018年第6期636-642,共7页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金(51679051) 国防基础科研计划(JCKY2016604B001)资助项目
关键词 半浸桨 数值分析 水动力特性 自然通气状态 surface piercing propeller numerical analysis hydrodynamic characteristics naturally ventilated condition
  • 相关文献

参考文献2

二级参考文献17

  • 1董世汤.二元超空泡水翼的线性化理论[J].中国造船,1963,(1).
  • 2ROSE C J, KRUPPA C F L, KOUSHAN K. Surface piercing propellers, propeller/Hull interaction[C]// FAST'93.
  • 3KRUPPA F L C, ROSE C J. Methodical Series Model Test Results[C]//FAST'91.
  • 4NOZAWA K, TAKAYAMA N. Experimental study on propulsive performance of surface piercing propeller[C]// KSNAJ, 2002.
  • 5PUSTOSHNY V A, BOINTSOV V, LEBEDEV P E, STROGANOV A. Development of 5-blade SPP series for fast speed boat[C]// Proceeding of the 9th international Conference on Fast Sea, Shanghai, 2007.
  • 6FERRANDO M, SCAMARDELLA A. Surface piercing propellers: testing methodologies, result analysis and comments on open water characteristics[C]// Proc. Small Craft Marine Engineering Resistance & Propulsion Symposium, 1996, pp.5-1 , 5-27. Ypsilanti: University of Michigan.
  • 7FERRANDO M. Surface piercing propellers: state of the art, Oceanic Eng. International, 1997, 1(2): 40-49.
  • 8FERRANDO M, SCAMARDELLA A. Surface piercing propellers: model tests procedures and comments on related dimensional parameters[C]// Proceedings 5th Symposium on High Speed Marine Vehicles, Capri 1999: 24-26.
  • 9FERRANDO M, VIVIANI M, CR()TTI S, CASSELLA P, CALDARELLA S. Influence of Weber number on Surface Piercing Propellers model tests scaling[C]//Proceedings of 7th International Conference on Hydrodynamics (ICHD), Ischia, 2006: 4-6.
  • 10FERRANDO M, SCAMARDELLA A, BOSE N, LIU P, VEITCH B. Performance of family of surface piercing propellers. Royal Institution for Naval Architects (RINA) Transactions 2002, Part A 11p. YIN L. YOUNG, ZHANKE LIU, Performance Prediction of Newton-Rader Propellers, Journal of Ship Research, 2008, 52(2): 124-145.

共引文献11

同被引文献13

引证文献6

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部