摘要
针对传统条码识读方法对微小数据矩阵(DM)码定位精度低、速度慢等问题,提出了以Harris角点作为高频特征,构建高斯金字塔过滤背景金属纹理角点,引入径向基函数平滑角点密度图,通过阈值分割以及区域生长粗定位候选区域,计算2步最小外接矩形并校正实现精定位,最后建立筛选模型选择适应值最大的候选区域为DM码区域.实验表明,提出的采用角点检测和区域生长定位检测算法对受到金属纹理、局部遮挡、磨损划痕以及光照不均等干扰的微小DM码具有很强的鲁棒性,精定位准确率高,仅耗时25ms,比传统方法提高了30倍.
Focusing on the deficiencies of traditional data matrix(DM)code localization methods in speed and precision,we proposed a code localization method that structured Gaussian pyramid to extract Harris corner features.Corner density map was smoothed by radial basis function,and rough candidate regions were obtained by threshold and region growing.Next,we computed two stage minimum-area encasing rectangle to implement accurate localization.Finally,we chose the candidate region with maximum score based on three properties of DM code as the real DM region.The result shows that our method which used corner detection and regional growth is robust to the various interferences with high accuracy,such as metal texture,high reflection,scratch marks and occlusion on DM code.The localization time is 25 ms,which is 30 times faster than the compared methods.
出处
《上海交通大学学报》
EI
CAS
CSCD
北大核心
2018年第7期816-824,共9页
Journal of Shanghai Jiaotong University
基金
国家自然科学基金资助项目(51275419)
关键词
微小数据矩阵码
精确定位
HARRIS角点
径向基函数
最小外接矩形
micro data matrix(DM)code
accurate localization
Harris corner
radial basis function
minimum-area encasing rectangle