期刊文献+

晶体塑性模型在微压缩实验误差分析中的应用 被引量:2

Crystal Plasticity Model Apply to the Error Analysis of Microcompression Test
下载PDF
导出
摘要 应用基于位错密度的各向异性晶体塑性理论模型,分析了轴向压缩下Ni单晶微圆柱体的力学响应.将其与实验结果对比,验证了该理论模型的合理性.进而,以单滑移[123]取向Ni金属柱体的微压缩实验为研究对象,分析晶体取向、摩擦力、接触失配以及几何锥度等常见实验误差因素对其力学测试结果的影响.研究结果表明:在单滑移取向下,晶体取向偏差(2°)导致微圆柱体整体变形从单滑移向多滑移变形转变;受摩擦力影响的横向约束效应可以显著提高塑性应变硬化程度;接触失配导致弹性模量测试值偏低,同时使得塑性剪切滑移主方向发生显著改变;在有锥度(2°~5°)条件下,屈服应力值较无锥度情况偏低. Anisotropic crystal plasticity model based on dislocation density is employed to investigate the mechanical response of nickel single crystalline micropillar,and is further verified by comparing its predictions with existing experimental data.Following that,we study nickel single crystalline micropillar with orientation having [123],and investigate the influence of common experimental errors of crystal orientations,friction,misalignment and taper angle,on the mechanical testing results.It is found that for the single-slip orientated micropillar,slight variation of crystal orientation leads to a transition from singleslip behavior to multi-slip deformation.Friction-affected lateral constraint shows a dramatic effect on the microcrystal strain hardening behavior.Small misalignments give rise to a decrease of elastic modulus,and change the prime slip direction in significant ways.The taper micropillar shows much smaller yield stress than no taper pillars do.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2018年第7期860-866,共7页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金资助项目(1160225) 河南省基础与前沿技术研究计划项目(52110599) 郑州大学优秀青年教师发展基金资助项目(1521327001)
关键词 微压缩实验 误差分析 晶体塑性 有限元 microcompression test error analysis crystal plasticity finite element
  • 相关文献

参考文献3

二级参考文献69

  • 1Shah Z. In Situ TEM Investigation of the Mechanical Behavior of Mieronanoscaled Metal Pillars[J]. Jam, 2012, 64 ( 10 ) : I 229 - 1 234.
  • 2Shah Z W, Stach E A, Wiezorek J M K, et al. Grain Boundary- Mediated Plastieity in Nanoc~stalline Nickel [ J ]. Science, 2004, 305(5 684) : 654 -657.
  • 3Tian L, Cheng Y Q, Shah Z W, et al. Appr~mching the Ideal E- lastic Limit of Metallic' Glasses [ J ]. Nature Communications, 2012, 3.
  • 4Yu Q, Shah Z W, Li J, et al. Strong CnTstal Size Effect on De- formation Twinning [ J ]. Nature, 2010, 463 ( 7 279 ) : 335 -338.
  • 5Shah Z W, Mishra R K, Asif S A S, et al. Mechanical Annea- ling and Source-Limited Defin'mation in Submicrometre-Diameter Ni Crystals[J]. Nat Mater, 2008. 7 (2): 115-119.
  • 6Uehie M D, Dimiduk D M. Florando J N, et td. Sample Dimen- sions Influence Strength and Crystal l'lasticity [ J ]. Science, 2004, 305 (5 686) : 986 -989.
  • 7Uchie M D, Shade P A, Dimiduk D M. Micn~-Dompression Tes- ting of fcc Metals: A Selected Overview of Experiments and Sinm- lations[ J]. Jam, 2009, 61 (3) : 36 -41.
  • 8Wang Z L. Nanopiezolnmies[ J ]. Adram'ed ~l~laterial.~, 2007, 19 (6): 889-892.
  • 9Greer J R, De Hosson J T M. Plaslicily in Small-Sized Metallic: Systems: l,ntrinsie Versus Extrinsic Size Effect[ J]. Prugre.~s in Materials Science, 2011 , 56 (6) : 654 -724.
  • 10Chen C Q, Shi Y, Zhang Y S, et al. Size Dependence of Youngg Modulus in ZnO Nanowires[J]. Phys Rev lx, tt, 2006, 96 (7): 075 505.

共引文献21

同被引文献10

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部